Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
61
(25)
62
63
(26)
64
65
(27)
66
67
(22)
68
69
(29)
70
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
ARCHIMEDIS
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
36
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0058
"
n
="
58
"
rhead
="
ARCHIMEDIS
"/>
& </
s
>
<
s
xml:space
="
preserve
">quam proportionem habet quadratum e ψ ad quadra-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0058-01a
"
xlink:href
="
note-0058-01
"/>
tum ψ b, eandem habet dimidium lineæ _k_ r ad lineã ψ b.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">quare maiorem babet proportionem _k_ r ad i y, quàm di-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0058-02a
"
xlink:href
="
note-0058-02
"/>
midium k r ad ψ b: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">idcirco i y minor eſt, quàm dupla
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0058-03a
"
xlink:href
="
note-0058-03
"/>
ψ b. </
s
>
<
s
xml:space
="
preserve
">eſt autem ipſius o i dupla. </
s
>
<
s
xml:space
="
preserve
">ergo o i minor eſt, quàm
<
lb
/>
ψ b: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">i ω maior, quàm ψ r. </
s
>
<
s
xml:space
="
preserve
">ſed ψ r eſt æqualis ipſi f. </
s
>
<
s
xml:space
="
preserve
">maior
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0058-04a
"
xlink:href
="
note-0058-04
"/>
igitur eſt i ω, quàm f. </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quoniam portio ad humidum in
<
lb
/>
grauitate eam ponitur habere proportionem, quam qua-
<
lb
/>
dratum f q ad quadratum b d: </
s
>
<
s
xml:space
="
preserve
">quam uero proportionem
<
lb
/>
habet portio ad humidum in grauitate, eam habet pars ip
<
lb
/>
ſius demerſa ad totam portionem: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quam pars ipſius de-
<
lb
/>
merſa habet ad totam, eandem habet quadratum p m ad
<
lb
/>
quadratnm o n: </
s
>
<
s
xml:space
="
preserve
">ſequitur quadratum p m ad quadratum
<
lb
/>
o n eam proportionem habere, quam quadratum f q ad
<
lb
/>
b d quadratum.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">
<
anchor
type
="
figure
"
xlink:label
="
fig-0058-01a
"
xlink:href
="
fig-0058-01
"/>
atque ideo ſ q æ-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0058-05a
"
xlink:href
="
note-0058-05
"/>
qualis eſt ipſi p m.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">demõſtrata eſt au
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0058-06a
"
xlink:href
="
note-0058-06
"/>
tem p h maior,
<
lb
/>
quàm f. </
s
>
<
s
xml:space
="
preserve
">cõſtat igi
<
lb
/>
tur p m minorem
<
lb
/>
eſſe, quàm ſeſqui-
<
lb
/>
alterã ipſius p h:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">idcirco p h ma
<
lb
/>
iorem, quàm du-
<
lb
/>
plam h m. </
s
>
<
s
xml:space
="
preserve
">Sit p z
<
lb
/>
ipſius z m dupla. </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
erit t quidem cẽ-
<
lb
/>
trũ grauitatis to-
<
lb
/>
tius ſolidi: </
s
>
<
s
xml:space
="
preserve
">centrũ
<
lb
/>
eius partis, quæ intra humidum, punctumz: </
s
>
<
s
xml:space
="
preserve
">reliquæ uero
<
lb
/>
partis centrum erit in linea z t producta uſque ad g. </
s
>
<
s
xml:space
="
preserve
">Eodẽ
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0058-07a
"
xlink:href
="
note-0058-07
"/>
modo demonſtrabitur linea th perpendicularis ad ſuper-
<
lb
/>
ficiem humidi. </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">portio demerſa in humido ſeretur extra</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>