Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
61
(25)
62
63
(26)
64
65
(27)
66
67
(22)
68
69
(29)
70
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(25)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div94
"
type
="
section
"
level
="
1
"
n
="
37
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1428
"
xml:space
="
preserve
">
<
pb
o
="
25
"
file
="
0061
"
n
="
61
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
b ψ dupla ſit ψ d, erit d b ipſius b ψ ſeſquialtera. </
s
>
<
s
xml:id
="
echoid-s1429
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1430
"
xml:space
="
preserve
">quoniam e b ſeſ
<
lb
/>
quialtera est b r, ſequitur reliquam c d ipſius ψ r, boc est eius, quæ
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-01
"
xlink:href
="
note-0061-01a
"
xml:space
="
preserve
">12. quinti</
note
>
uſque ad axem ſeſquialteram eſſe. </
s
>
<
s
xml:id
="
echoid-s1431
"
xml:space
="
preserve
">quare b c erit exceſſus, quo axis
<
lb
/>
maior est, quàm ſeſquialter eius, quæ uſque ad axem.</
s
>
<
s
xml:id
="
echoid-s1432
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1433
"
xml:space
="
preserve
">_Quare f q minor éſtipſa b c.</
s
>
<
s
xml:id
="
echoid-s1434
"
xml:space
="
preserve
">]_ Nam cum portio ad bumi-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-02
"
xlink:href
="
note-0061-02a
"
xml:space
="
preserve
">B</
note
>
dum in grauitate proportionem habeat eandem, quàm quadratum
<
lb
/>
f q ad quadratum d b: </
s
>
<
s
xml:id
="
echoid-s1435
"
xml:space
="
preserve
">habeatq, minorem proportionem, quàm qua
<
lb
/>
dratum factum ab exceſſu, quo axis maior eſt, quàm ſeſquialter eius,
<
lb
/>
quæ uſque ad axem, ad quadratum ab axe; </
s
>
<
s
xml:id
="
echoid-s1436
"
xml:space
="
preserve
">boc eſt minorem, quàm
<
lb
/>
quadratum c b ad quadratum b d: </
s
>
<
s
xml:id
="
echoid-s1437
"
xml:space
="
preserve
">ponitur enim linea b d æqualis
<
lb
/>
axi: </
s
>
<
s
xml:id
="
echoid-s1438
"
xml:space
="
preserve
">quadratum f q ad quadratum d b proportionem minorem ha-
<
lb
/>
bebit, quàm quadratum c b ad idem b d quadratum. </
s
>
<
s
xml:id
="
echoid-s1439
"
xml:space
="
preserve
">ergo quadra-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-03
"
xlink:href
="
note-0061-03a
"
xml:space
="
preserve
">8. quinti.</
note
>
tum f q minus erit quadrato c b: </
s
>
<
s
xml:id
="
echoid-s1440
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1441
"
xml:space
="
preserve
">propterea linea f q ipſa b c
<
lb
/>
minor.</
s
>
<
s
xml:id
="
echoid-s1442
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1443
"
xml:space
="
preserve
">_Etidcirco f minor ipſa b r.</
s
>
<
s
xml:id
="
echoid-s1444
"
xml:space
="
preserve
">]_ Quoniam enim c b ſeſquial-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-04
"
xlink:href
="
note-0061-04a
"
xml:space
="
preserve
">C</
note
>
tera eſt b r, & </
s
>
<
s
xml:id
="
echoid-s1445
"
xml:space
="
preserve
">f q ipſius f ſeſquialtera: </
s
>
<
s
xml:id
="
echoid-s1446
"
xml:space
="
preserve
">estq; </
s
>
<
s
xml:id
="
echoid-s1447
"
xml:space
="
preserve
">f q minor b c; </
s
>
<
s
xml:id
="
echoid-s1448
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1449
"
xml:space
="
preserve
">f
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-05
"
xlink:href
="
note-0061-05a
"
xml:space
="
preserve
">14. quin-
<
lb
/>
ti.</
note
>
ipſa b r minor erit.</
s
>
<
s
xml:id
="
echoid-s1450
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1451
"
xml:space
="
preserve
">_Itaque quoniam ponitur axis portionis cum ſuperficie_
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-06
"
xlink:href
="
note-0061-06a
"
xml:space
="
preserve
">D</
note
>
_humidi facere angulum maiorem angulo b: </
s
>
<
s
xml:id
="
echoid-s1452
"
xml:space
="
preserve
">erit angulus_
<
lb
/>
_p y i angulo b maior.</
s
>
<
s
xml:id
="
echoid-s1453
"
xml:space
="
preserve
">]_ Nam cum linea p y ſuperficiei bumidi
<
lb
/>
æ quidistet; </
s
>
<
s
xml:id
="
echoid-s1454
"
xml:space
="
preserve
">uidelicet ipſi x s: </
s
>
<
s
xml:id
="
echoid-s1455
"
xml:space
="
preserve
">angulus p y i æqualis erit angulo, qui
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-07
"
xlink:href
="
note-0061-07a
"
xml:space
="
preserve
">29. primi</
note
>
diametro portionis n o, & </
s
>
<
s
xml:id
="
echoid-s1456
"
xml:space
="
preserve
">linea x s continetur. </
s
>
<
s
xml:id
="
echoid-s1457
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s1458
"
xml:space
="
preserve
">angulo
<
lb
/>
b maior erit.</
s
>
<
s
xml:id
="
echoid-s1459
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1460
"
xml:space
="
preserve
">_Maiorem igitur proportionem habet quadratum p i ad_
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-08
"
xlink:href
="
note-0061-08a
"
xml:space
="
preserve
">E</
note
>
_quadratum i y, quàm quadratum e ψ ad ψ b quadratu.</
s
>
<
s
xml:id
="
echoid-s1461
"
xml:space
="
preserve
">]_
<
lb
/>
Deſcribantur ſeorſum triangula p i y, e ψ b. </
s
>
<
s
xml:id
="
echoid-s1462
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1463
"
xml:space
="
preserve
">cum angulus p y i
<
lb
/>
maior ſit angulo e b ψ, ad lineam i y, atque ad punctum y in ea da-
<
lb
/>
tum fiat angulus u y i æqualis angulo e b ψ. </
s
>
<
s
xml:id
="
echoid-s1464
"
xml:space
="
preserve
">est autem angulus ad
<
lb
/>
i rectus æqualis recto ad ψ. </
s
>
<
s
xml:id
="
echoid-s1465
"
xml:space
="
preserve
">reliquus igitur y u i reliquo b c ψ est
<
lb
/>
æqualis. </
s
>
<
s
xml:id
="
echoid-s1466
"
xml:space
="
preserve
">quare linea u i ad lineam i y eandem proportionem ha-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-09
"
xlink:href
="
note-0061-09a
"
xml:space
="
preserve
">4. ſexti.</
note
>
bet, quam linea e ψ ad ψ b. </
s
>
<
s
xml:id
="
echoid-s1467
"
xml:space
="
preserve
">Sed linea p i, quæ maior est ipſa u i ad
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-10
"
xlink:href
="
note-0061-10a
"
xml:space
="
preserve
">8. quinti.</
note
>
lineam in maiorem habet proportionem quam u i ad eandem. </
s
>
<
s
xml:id
="
echoid-s1468
"
xml:space
="
preserve
">ergo
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0061-11
"
xlink:href
="
note-0061-11a
"
xml:space
="
preserve
">13. quin-
<
lb
/>
ti.</
note
>
p i ad i y maiorem proportionem habebit, quàm e ψ ad ψ b: </
s
>
<
s
xml:id
="
echoid-s1469
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1470
"
xml:space
="
preserve
">
<
lb
/>
propterea quadratum p i ad quadratum i y maiorem habebit, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>