Clavius, Christoph, Gnomonices libri octo, in quibus non solum horologiorum solariu[m], sed aliarum quo[quam] rerum, quae ex gnomonis umbra cognosci possunt, descriptiones geometricè demonstrantur

Page concordance

< >
Scan Original
101 81
102 82
103 83
104 84
105 85
106 86
107 87
108 88
109 89
110 90
111 91
112 92
113 93
114 94
115 95
116 96
117 97
118 98
119 99
120 100
121 101
122 102
123 103
124 104
125 105
126 106
127 107
128 108
129 109
130 110
< >
page |< < (84) of 677 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div288" type="section" level="1" n="115">
          <p style="it">
            <s xml:id="echoid-s4602" xml:space="preserve">
              <pb o="84" file="0104" n="104" rhead="GNOMONICES"/>
            mus, vt etiam Ioannes Baptiſta Benedictus facit in libro de gnomonum, vmbrarum{q́ue} ſolarium vſu, hoc
              <lb/>
              <note position="left" xlink:label="note-0104-01" xlink:href="note-0104-01a" xml:space="preserve">Linea meridia-
                <lb/>
              na qua atte per
                <lb/>
              Analemma in-
                <lb/>
              Menia@@r.</note>
            modo. </s>
            <s xml:id="echoid-s4603" xml:space="preserve">Inuenta, vt prius, per vmbram recta A B, communi ſectione plani Horizonti æquidiſtantis, & </s>
            <s xml:id="echoid-s4604" xml:space="preserve">
              <lb/>
            Verticalis circuli tempore obſeruationis per Solis centrum tranſeuntis; </s>
            <s xml:id="echoid-s4605" xml:space="preserve">& </s>
            <s xml:id="echoid-s4606" xml:space="preserve">eodem tempore accepta alti-
              <lb/>
              <figure xlink:label="fig-0104-01" xlink:href="fig-0104-01a" number="68">
                <image file="0104-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0104-01"/>
              </figure>
              <note position="left" xlink:label="note-0104-02" xlink:href="note-0104-02a" xml:space="preserve">10</note>
              <note position="left" xlink:label="note-0104-03" xlink:href="note-0104-03a" xml:space="preserve">20</note>
              <note position="left" xlink:label="note-0104-04" xlink:href="note-0104-04a" xml:space="preserve">30</note>
            tudine Solis, loco Astrolabij deſcribemus Analemma, in quo Meridianus ſit F G H I; </s>
            <s xml:id="echoid-s4607" xml:space="preserve">Horizontis, & </s>
            <s xml:id="echoid-s4608" xml:space="preserve">
              <lb/>
            Meridiani communis ſectio G I; </s>
            <s xml:id="echoid-s4609" xml:space="preserve">Verticalis propriè dicti, & </s>
            <s xml:id="echoid-s4610" xml:space="preserve">eiuſdem Meridiani communis ſectio F H;
              <lb/>
            </s>
            <s xml:id="echoid-s4611" xml:space="preserve">eiuſdem & </s>
            <s xml:id="echoid-s4612" xml:space="preserve">Aequatoris communis ſectio L M; </s>
            <s xml:id="echoid-s4613" xml:space="preserve">communis denique ſectio Meridiani, & </s>
            <s xml:id="echoid-s4614" xml:space="preserve">paralleli Solis
              <lb/>
            illo die, quo fit obſeruatio, recta N O; </s>
            <s xml:id="echoid-s4615" xml:space="preserve">quæ quidem beneficio declinationis Solis ducetur, quemadmodum
              <lb/>
            propoſ. </s>
            <s xml:id="echoid-s4616" xml:space="preserve">1. </s>
            <s xml:id="echoid-s4617" xml:space="preserve">huius lib. </s>
            <s xml:id="echoid-s4618" xml:space="preserve">docuimus. </s>
            <s xml:id="echoid-s4619" xml:space="preserve">Deinde ſupputata altitudine Solis inuenta ex I, vſque ad P, & </s>
            <s xml:id="echoid-s4620" xml:space="preserve">ex G, vſ-
              <lb/>
              <note position="left" xlink:label="note-0104-05" xlink:href="note-0104-05a" xml:space="preserve">40</note>
            que ad Q, ducemus rectam P Q, quæ ex ſcholio propoſ. </s>
            <s xml:id="echoid-s4621" xml:space="preserve">27. </s>
            <s xml:id="echoid-s4622" xml:space="preserve">lib. </s>
            <s xml:id="echoid-s4623" xml:space="preserve">3. </s>
            <s xml:id="echoid-s4624" xml:space="preserve">Euclidis parallela erit ipſi G I, atque
              <lb/>
            adeo communis ſectio Meridiani & </s>
            <s xml:id="echoid-s4625" xml:space="preserve">paralleli Horizontis per centrum Solis tranſeuntis, ſecabit{q́ue} Verti-
              <lb/>
            calem lineam F H, in R, & </s>
            <s xml:id="echoid-s4626" xml:space="preserve">diametrum paralleli Solis N O, in S. </s>
            <s xml:id="echoid-s4627" xml:space="preserve">Deſcripto autem ex R, centro circa
              <lb/>
            P Q, ſemicirculo P T Q, ducemus ex S, ad P Q, perpendicularem S T, vſque ad circunferentiam ſe-
              <lb/>
            micirculi P T Q, & </s>
            <s xml:id="echoid-s4628" xml:space="preserve">rectam adiungemus T R. </s>
            <s xml:id="echoid-s4629" xml:space="preserve">Si igitur punctum S, fuerit inter Q, & </s>
            <s xml:id="echoid-s4630" xml:space="preserve">R, & </s>
            <s xml:id="echoid-s4631" xml:space="preserve">obſerua-
              <lb/>
            tio fiat ante meridiem, conſtituemus in centro C, (ex quo vt cunque aſſumpto in linea vmbræ A B, circu-
              <lb/>
            lum cuiuſcunque magnitudinis deſcribimus,) angulum A C D, angulo acuto T R Q, æqualem, ab ortu
              <lb/>
            verſus auſtrum, id eſt, à puncto A, verſus punctum D, vt in figura A, cernitur. </s>
            <s xml:id="echoid-s4632" xml:space="preserve">Si vero obſeruatio fiat
              <lb/>
            poſt meridiem, eidem angulo faciemus æqualem A C D, ab occaſu verſus auſtrum, hoc est, à puncto A,
              <lb/>
            verſus punctum D, vt in figura B, apparet. </s>
            <s xml:id="echoid-s4633" xml:space="preserve">Quòd ſi punctum S, in punctum R, cadat, ſiue obſeruatio fiat
              <lb/>
              <note position="left" xlink:label="note-0104-06" xlink:href="note-0104-06a" xml:space="preserve">50</note>
            ante meridiem, ſiue poſt, ducemus ad A B, per C, perpendicularem D E, vt perſpicuum eſt in figura C.
              <lb/>
            </s>
            <s xml:id="echoid-s4634" xml:space="preserve">Si denique punctum S, extiterit inter R, & </s>
            <s xml:id="echoid-s4635" xml:space="preserve">P, & </s>
            <s xml:id="echoid-s4636" xml:space="preserve">obſeruatio fiat ante meridiem, efficiemus angulo acuto
              <lb/>
            T R P, ęqualem A C E, ab ortu verſus boream, id est, à puncto A, verſus punctum E, vt videre eſt
              <lb/>
            in figura D. </s>
            <s xml:id="echoid-s4637" xml:space="preserve">Si verò fiat obſeruatio pomeridiano tempore, eidem angulo ęqualem faciemus A C E, ab
              <lb/>
            occaſu verſus boream, hoc eſt, à puncto A, verſus E, vt exfigura E, manifeſtum est. </s>
            <s xml:id="echoid-s4638" xml:space="preserve">Semper enim recta
              <lb/>
            D E, erit linea meridiana. </s>
            <s xml:id="echoid-s4639" xml:space="preserve">Quod hunc in modum confirmabimus. </s>
            <s xml:id="echoid-s4640" xml:space="preserve">Quoniã parallelus Horizontis P T Q,
              <lb/>
            & </s>
            <s xml:id="echoid-s4641" xml:space="preserve">parallelus Solis recti ſunt ad Meridianum, erit quoque communis eorum ſectio ad eundem perpen-
              <lb/>
              <note position="left" xlink:label="note-0104-07" xlink:href="note-0104-07a" xml:space="preserve">19. vndec.</note>
            dicularis, at que adeo, per definitionem 3. </s>
            <s xml:id="echoid-s4642" xml:space="preserve">lib. </s>
            <s xml:id="echoid-s4643" xml:space="preserve">11. </s>
            <s xml:id="echoid-s4644" xml:space="preserve">Euclidis, & </s>
            <s xml:id="echoid-s4645" xml:space="preserve">ad rectam P Q, in puncto S, vbi mutuo ſe
              <lb/>
            diuidunt diametri dictorum parallelorum. </s>
            <s xml:id="echoid-s4646" xml:space="preserve">Igitur ST, perpendicularis exiſtens ad P Q, communis ſe-
              <lb/>
            ctio erit parallelorum dictorum, ac proinde tempore obſeruationis centrum Solis in puncto T, erit, ſi
              <lb/>
            parallelus Horizontis P T Q, vna cum Meridiano Analemmatis propriam poſitionem habeat. </s>
            <s xml:id="echoid-s4647" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>