Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
21
21 (5)
22
22
23
23 (6)
24
24
25
25 (7)
26
26
27
27 (8)
28
28
29
29 (9)
30
30
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div212" type="section" level="1" n="71">
          <p>
            <s xml:id="echoid-s3281" xml:space="preserve">
              <pb file="0128" n="128" rhead="FED. COMMANDINI"/>
            ergo linea a g continenter in duas partes æquales diui-
              <lb/>
              <note position="left" xlink:label="note-0128-01" xlink:href="note-0128-01a" xml:space="preserve">1. decimi</note>
            ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
              <lb/>
            </s>
            <s xml:id="echoid-s3282" xml:space="preserve">Vtraque uero linearum a g, g b diuidatur in partes æqua-
              <lb/>
            les ipſi n g: </s>
            <s xml:id="echoid-s3283" xml:space="preserve">& </s>
            <s xml:id="echoid-s3284" xml:space="preserve">per puncta diuiſionum plana oppoſitis pla-
              <lb/>
              <note position="left" xlink:label="note-0128-02" xlink:href="note-0128-02a" xml:space="preserve">5 huius</note>
            nis æquidiſtantia ducantur. </s>
            <s xml:id="echoid-s3285" xml:space="preserve">erunt ſectiones figuræ æqua-
              <lb/>
            les, ac ſimiles ipſis a c e, b d f: </s>
            <s xml:id="echoid-s3286" xml:space="preserve">& </s>
            <s xml:id="echoid-s3287" xml:space="preserve">totum priſma diuiſum erit
              <lb/>
            in priſmata æqualia, & </s>
            <s xml:id="echoid-s3288" xml:space="preserve">ſimilia: </s>
            <s xml:id="echoid-s3289" xml:space="preserve">quæ cum inter ſe congruãt;
              <lb/>
            </s>
            <s xml:id="echoid-s3290" xml:space="preserve">& </s>
            <s xml:id="echoid-s3291" xml:space="preserve">grauitatis centra ſibi ipſis congruentia, reſpondentiaq; </s>
            <s xml:id="echoid-s3292" xml:space="preserve">
              <lb/>
            habebunt. </s>
            <s xml:id="echoid-s3293" xml:space="preserve">Itaq: </s>
            <s xml:id="echoid-s3294" xml:space="preserve">
              <lb/>
              <figure xlink:label="fig-0128-01" xlink:href="fig-0128-01a" number="84">
                <image file="0128-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0128-01"/>
              </figure>
            ſunt magnitudi-
              <lb/>
            nes quædã æqua-
              <lb/>
            les ipſi n h, & </s>
            <s xml:id="echoid-s3295" xml:space="preserve">nu-
              <lb/>
            mero pares, qua-
              <lb/>
            rum centra gra-
              <lb/>
            uitatis in eadẽ re
              <lb/>
            cta linea conſti-
              <lb/>
            tuuntur: </s>
            <s xml:id="echoid-s3296" xml:space="preserve">duæ ue-
              <lb/>
            ro mediæ æqua-
              <lb/>
            les ſunt: </s>
            <s xml:id="echoid-s3297" xml:space="preserve">& </s>
            <s xml:id="echoid-s3298" xml:space="preserve">quæ ex
              <lb/>
            utraque parte i-
              <lb/>
            pſarum ſimili --
              <lb/>
            ter æquales: </s>
            <s xml:id="echoid-s3299" xml:space="preserve">& </s>
            <s xml:id="echoid-s3300" xml:space="preserve">æ-
              <lb/>
            quales rectæ li-
              <lb/>
            neæ, quæ inter
              <lb/>
            grauitatis centra
              <lb/>
            interiiciuntur.
              <lb/>
            </s>
            <s xml:id="echoid-s3301" xml:space="preserve">quare ex corolla-
              <lb/>
            rio quintæ pro-
              <lb/>
            poſitionis primi
              <lb/>
            libri Archimedis
              <lb/>
            de centro graui-
              <lb/>
            tatis planorum; </s>
            <s xml:id="echoid-s3302" xml:space="preserve">magnitudinis ex his omnibus compoſitæ
              <lb/>
            centrum grauitatis eſt in medio lineæ, quæ magnitudi-
              <lb/>
            num mediarum centra coniungit. </s>
            <s xml:id="echoid-s3303" xml:space="preserve">at qui non ita res </s>
          </p>
        </div>
      </text>
    </echo>