Bernoulli, Daniel, Hydrodynamica, sive De viribus et motibus fluidorum commentarii

Table of contents

< >
[121.] EXPERIMENTA Ad ſect. ſept. referenda. Experimentum 1.
[122.] Experimentum 2.
[123.] Experimentum 3.
[124.] De iſto tubo experimentum ita ſumſi:
[125.] Experimentum 4.
[126.] Experimentum 5.
[127.] HYDRODYNAMICÆ SECTIO OCTAVA. De motu fluidorum cum homogeneorum tum hetero-geneorum per vaſa irregularis & præruptæ ſtru-cturæ, ubi ex theoria virium vivarum, quarum pars continue abſorbeatur, explicantur præcipue Phæno-mena ſingularia fluidorum, per plurima foramina trajecto-rum, præmiſsis regulis generalibus pro motibus fluido-rum ubique definiendis. §. 1.
[128.] Regula 1.
[129.] Regula 2.
[130.] Problema.
[131.] Solutio.
[132.] Scholium 1.
[133.] Scholium 2.
[134.] Corollarium.
[135.] EXPERIMENTA Ad ſectionem octavam pertinentia. Experimentum 1.
[136.] Experimentum 2.
[137.] HYDRODYNAMICÆ SECTIO NONA. De motu fluidorum, quæ non proprio pondere, ſed potentia aliena ejiciuntur, ubi præſertim de Machinis Hydraulicis earundemque ultimo qui da-ri poteſt perfectionis gradu, & quomodo mecha-nica tam ſolidorum quam fluidorum ulterius perſici poſsit. §. 1.
[138.] Definitiones.
[139.] (A) De machinis aquas cum impetu in altum projicientibus. Regula 1.
[140.] Demonſtratio.
[141.] Scholium.
[142.] Regula 2.
[143.] Demonſtratio.
[144.] Scholium.
[145.] Regula 3.
[146.] Demonſtratio.
[147.] Scholium.
[148.] Regula 4.
[149.] Demonſtratio.
[150.] Scholium.
< >
page |< < (116) of 361 > >|
130116HYDRODYNAMICÆ aquæ in c A d per C A, aggregatumque horum productorum dividendo per
ſummam harum maſſarum.
Unde invenitur. A F = {ga X (f + {1/2}b) + γα X (φ + {1/2}β) + Mm/ga + γα + M}
Problema.
§. 7. Determinare ubique velocitates aquæ oſcillantis, poſito oſcilla-
tiones ultra terminos tuborum cylindricorum non divagari.
Solutio.
Sit aqua oſcillationem inchoans in ſitu a c A d f perveneritque poſtmo-
dum in ſitum o c A d p, retentiſque denominationibus |in præcedente paragra-
pho factis, ponatur a o = x;
erit f p = {gx/γ}: unde (ſi nempe centrum gravita-
tis omnis aquæ deſcendiſſe putetur ex F in O) erit vi præcedentis paragraphi
A O = {g X (a - x) X (f + {1/2}b - {bx/2a}) + γ X (a + {gx/γ}) X (φ + {1/2}β + {βgx/2αγ}) + Mm/ga + γα + M}
Inde deducitur deſcenſus centri gravitatis ſeu deſcenſus actualis
F O = {(b - β + f - φ)gx - ({bg/2a} + {bgg/2αγ}) xx/ga + γα + M}
Sit nunc velocitas aquæ in tubo a c (cum nempe ſuperficies eſt in o) ta-
lis quæ reſpondeat altitudini v, &
erit tunc aſcenſus potent. aquæ in altero tubo
= {gg/γγ} v:
pariterque aſcenſus potent. aquæ c A d, erit proportionalis altitudini v,
eamque proinde ponemus = N v (ubi N pendet à figura utris c A d &
deter-
minari poteſt per §.
2. Sect. 3.) Jam vero ſi multiplicatis ubique aſcenſibus po-
tentialibus per ſuas maſſas producta dividantur per ſummam maſſarum, habebi-
tur aſcenſ{us} potent.
omnis aquæ o c A d p =
{(ga - gx + {αgg/γ} + {g3x/γγ} + MN)v/ga + γα + M}
Et quia hic aſcenſus potentialis eſt æqualis deſcenſui actuali F O paullo ante
invento,

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index