Valerio, Luca, De centro gravitatis solidorvm libri tres

Table of figures

< >
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
< >
page |< < of 283 > >|
1KLMN abſciſſum ijſdem planis, quibus por­
tio, & ſphæræ ſemidiameter ſit EHGS: & po­
ſita T tripla ipſius ES, & V ipſius EG tri­
pla, eſto vt V ad T ita T ad XZ: & vt GE
ad EH ita EH ad ω, & ſit ZY, ipſius XZ,
æqualis tribus GE, EH, ω, vt ſit exceſſus
XY: & ſecto axe GH bifariam in puncto I, in
linea GI, ſumatur O, centrum grauitatis fru­
ſti KLMN: Et vt ΥX ad XZ, ita fiat IO
ad OIP.
Dico portionis ABCD centrum
grauitatis eſſe P.
Nam circa axim GH pla­
nis baſium portionis interceptus ſtet cylin­
drus QR, cuius baſis ſit æqualis circulo ma­
ximo.
Quoniam igitur eſt vt YX ad XZ,
hoc eſt vt IO ad OP, ita portio ABCD
ad cylindrum QR, & diuidendo vt OI ad
IP, ita portio ABCD ad reliquum cylindri
QR: & I eſt cylindri QR, & O prædicti
reſidui centrum grauitatis; erit reliquæ por­
115[Figure 115]
tionis ABCD centrum grauitatis P.
Quod demon­
ſtrandum erat.

Text layer

  • Dictionary
  • Places

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index