Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Page concordance

< >
Scan Original
151 424
152 425
153 426
154 427
155 428
156 429
157 430
158 431
159 432
160 433
161 434
162 435
163 436
164 437
165 438
166 439
167 440
168 441
169 442
170 443
171 444
172 445
173 446
174 447
175 448
176 449
177 450
178
179
180
< >
page |< < (425) of 568 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div159" type="section" level="1" n="73">
          <pb o="425" file="0143" n="152" rhead="ET HYPERBOLÆ QUADRATURA."/>
        </div>
        <div xml:id="echoid-div160" type="section" level="1" n="74">
          <head xml:id="echoid-head110" xml:space="preserve">PROP. VIII. PROBLEMA.</head>
          <p style="it">
            <s xml:id="echoid-s3062" xml:space="preserve">Sint duæ quantitates datæ A, B, & </s>
            <s xml:id="echoid-s3063" xml:space="preserve">ratio quæli-
              <lb/>
            libet data C ad D: </s>
            <s xml:id="echoid-s3064" xml:space="preserve">oportet invenire aliam
              <lb/>
            quantitatem, ut ratio ejus ad A ſit multipli-
              <lb/>
            cata rationis B ad A in ratione C ad D.</s>
            <s xml:id="echoid-s3065" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3066" xml:space="preserve">Sit primò ratio C ad D commen-
              <lb/>
              <note position="right" xlink:label="note-0143-01" xlink:href="note-0143-01a" xml:space="preserve">
                <lb/>
              EDC # AFBG
                <lb/>
              </note>
            ſurabilis, ſitque inter C & </s>
            <s xml:id="echoid-s3067" xml:space="preserve">D com-
              <lb/>
            munis menſura E; </s>
            <s xml:id="echoid-s3068" xml:space="preserve">& </s>
            <s xml:id="echoid-s3069" xml:space="preserve">quoties E continetur in D toties ſit
              <lb/>
            ratio F ad A ſubmultiplicata rationis B ad A; </s>
            <s xml:id="echoid-s3070" xml:space="preserve">& </s>
            <s xml:id="echoid-s3071" xml:space="preserve">quoties E
              <lb/>
            continetur in C toties ſit ratio G ad A multiplicata rationis
              <lb/>
            F ad A: </s>
            <s xml:id="echoid-s3072" xml:space="preserve">dico G eſſe quantitatem illam quæſitam. </s>
            <s xml:id="echoid-s3073" xml:space="preserve">ratio G ad
              <lb/>
            A eſt multiplicata rationis F ad A in ratione C ad E, & </s>
            <s xml:id="echoid-s3074" xml:space="preserve">ra-
              <lb/>
            tio F ad A eſt multiplicata rationis B ad A in ratione E ad D; </s>
            <s xml:id="echoid-s3075" xml:space="preserve">& </s>
            <s xml:id="echoid-s3076" xml:space="preserve">
              <lb/>
            igitur ex æqualitate, ratio G ad A eſt multiplicata rationis
              <lb/>
            B ad A in ratione C ad D, quod demonſtrare oportuit.</s>
            <s xml:id="echoid-s3077" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3078" xml:space="preserve">Quod ſi ratio C ad D ſit incommenſurabilis, geometricam
              <lb/>
            hujus problematis praxim eſſe impoſſibilem mihi perſuadeo;
              <lb/>
            </s>
            <s xml:id="echoid-s3079" xml:space="preserve">approximatione tamen fieri poteſt, aſſumendo rationem com-
              <lb/>
            menſurabilem ejus loco, quæ quàm proximè ad illam acce-
              <lb/>
            dat.</s>
            <s xml:id="echoid-s3080" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3081" xml:space="preserve">Sit ſeries convergens, cujus primi
              <lb/>
              <note position="right" xlink:label="note-0143-02" xlink:href="note-0143-02a" xml:space="preserve">
                <lb/>
              ## G # H # A # B
                <lb/>
              # N # I # K # C # D
                <lb/>
              M ## R # S # E # F
                <lb/>
              # O # T # V # X # Y
                <lb/>
              ### L ## Z
                <lb/>
              </note>
            termini convergentes ſint A, B, ſe-
              <lb/>
            cundi C, D, tertii E, F; </s>
            <s xml:id="echoid-s3082" xml:space="preserve">ſintque
              <lb/>
            ſecundi termini ita facti à primis, ut
              <lb/>
            ratio B majoris ad A minorem ſit
              <lb/>
            multiplicata rationis C ad A in ra-
              <lb/>
            tione data mojoris inæqualitatis M ad N, & </s>
            <s xml:id="echoid-s3083" xml:space="preserve">ut ratio B ad
              <lb/>
            A ſit multiplicata rationis D ad A in ratione data majoris
              <lb/>
            inæqualitatis M ad O: </s>
            <s xml:id="echoid-s3084" xml:space="preserve">ſintque tertii termini eodem modo
              <lb/>
            facti ex ſecundis quo ſecundi facti ſunt ex primis; </s>
            <s xml:id="echoid-s3085" xml:space="preserve">atque ita
              <lb/>
            continuetur ſeries.</s>
            <s xml:id="echoid-s3086" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>