Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Table of figures

< >
[61] Fig. 5.G L B H D O A E C K
[62] Fig. 7.K F A C D B E H G
[63] Pag. 404.TAB. XLII.Fig. 1.K F M A C D B L E N G
[64] Fig. 3.G R D B H F E N A X C M P Q K
[65] Fig. 2.K A F c S C L E B T G D R d
[66] Fig. 4.K e G P E m B D f R F S H M C A N L Q n
[67] Fig. 5.B C R E G A F M Q D O
[68] Fig. 6.B C H G E A M Q P K D
[69] Fig. 7.B C E G A M P Q K H D
[Figure 70]
[71] Pag. 450.TAB.XLIII.Fig. 4.B A F R P C D E G H I K S L M N O
[72] Fig. 1.F G I K D L E S T O C N H M V R B Q P A
[73] Fig. 2.F G I K D L E S T O C N V R B Q P A
[74] Fig. 5.A C B D E
[75] Fig. 3.A F G I K D L S T E O C N H M V R B Q P
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[83] TAB. XLIV.Fig. 2.D H A B E F G
[84] Fig. 1.E G N L O I Q P D K M H F A
[85] Fig. 3.B E F A D G C
[86] I. CasusFig. 4.Y Q R C A B M L I K V C O S X
[87] II. CasusFig. 5.R C Y Q A B I L M K V O X S C
[88] III. CasusFig. 6.Q C D Y K L I N M S V B X C A G O
[89] Fig. 7.IV. CasusQ D C A B S L N X M I V Y K C G O
[Figure 90]
< >
page |< < (443) of 568 > >|
170443ET HYPERBOLÆ QUADRATURA. G H, nempe X; atque ex hujus 7 terminatio ſeriei A B,
G H, nempe X, æqualis eſt minori duarum mediarum arith-
meticè continuè proportionalium inter A &
B, & ideo Z ea-
dem minor eſt, quod demonſtrare oportuit.
PROP. XXV. THEOREMA.
Iisdem poſitis; dico Z ſeu ſectorem
11
A B # A B
C D # G H
E F # M N
K L # O P
Z # X
hyperbolæ minorem eſſe quam mi-
nor duarum mediarum geometricè con-
tinuè proportionalium inter A &
B.
Inter A & B ſit media geometrica G,
&
inter G & B media geometrica H;
Item inter G &
H media geometrica M, & inter M & H media
geometriea N;
continueturque hæc ſeries convergens AB, GH,
MN, OP, &
c. in infinitum ut fiat ejus terminatio X. ſatis patet
ex prædictis C &
G eſſe inter ſe æquales, & H majorem eſſe
quam D;
atque ob hanc rationem M media geometrica inter G
&
H major eſt quam E media geometrica inter C & D. Deinde
N media geometrica inter M &
H major eſt media harmonica
inter eaſdem;
& quoniam M major eſt quam E & H quam D, erit
media harmonica inter M &
H major quam F media harmo-
nica inter E &
D; proinde N media geometrica inter M & H
major eritquam F.
eadem methodo utramque ſeriem in in-
finitum continuando, ſemper demonſtratur terminum quem-
libet ſeriei A B, C D, minorem eſſe quam idem numero ter-
minus ſeriei A B, G H;
& igitur terminatio ſeriei A B, C D,
nempe Z minor erit quam terminatio ſeriei A B, G H, nem-
pe X;
atque ex hujus 9 terminatio ſeriei A B, G H, ſeu X, æqua-
lis eſt minori duarum mediarum geometricè continuè propor-
tionalium inter A &
B; & ideo Z eadem minor eſt, quod
demonſtrare oportuit.
Ex dictis manifeſtum eſt hanc approximationem exactio-
rem eſſe illa, in antecedenti propoſitione, demonſtrata, et-
iamſi hæc ſit paulò laborioſior.
ſed non diſſimulandum
eſt duas poſſe eſſe ſeries æquales terminationes habentes,

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index