Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Table of contents

< >
[71.] PROP. VI. THEOREMATA.
[72.] SCHOLIUM.
[73.] PROP. VII. PROBLEMA. Oportet prædictæ ſeriei terminationem invenire.
[74.] PROP. VIII. PROBLEMA.
[75.] PROP. IX. PROBLEMA.
[76.] PROP. X. PROBLEMA.
[77.] CONSECTARIUM.
[78.] PROP. XI. THEOREMA.
[79.] SCHOLIUM.
[80.] PROP. XII. THEOREMA.
[81.] PROP. XIII. THEOREMA.
[82.] PROP. XIV. THEOREMA.
[83.] PROP. XV. THEOREMA.
[84.] PROP. XVI. THEOREMA.
[85.] PROP. XVII. THEOREMA.
[86.] PROP. XVIII. THEOREMA.
[87.] PROP. XIX. THEOREMA.
[88.] CONSECTARIUM.
[89.] PROP. XX. THEOREMA.
[90.] PROP. XXI. THEOREMA.
[91.] PROP. XXII. THEOREMA.
[92.] SCHOLIUM.
[93.] PROP. XXIII. THEOREMA.
[94.] PROP. XXIV. THEOREMA.
[95.] PROP. XXV. THEOREMA.
[96.] PROP. XXVI. THEOREMA.
[97.] PROP. XXVII. THEOREMA.
[98.] PROP. XXVIII. THEOREMA.
[99.] PROP. XXIX. PROBLEMA. Dato circulo æquale invenire quadratum.
[100.] PROP. XXX. PROBLEMA. Ex dato ſinu invenire arcum.
< >
page |< < (443) of 568 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div195" type="section" level="1" n="94">
          <p>
            <s xml:id="echoid-s3623" xml:space="preserve">
              <pb o="443" file="0161" n="170" rhead="ET HYPERBOLÆ QUADRATURA."/>
            G H, nempe X; </s>
            <s xml:id="echoid-s3624" xml:space="preserve">atque ex hujus 7 terminatio ſeriei A B,
              <lb/>
            G H, nempe X, æqualis eſt minori duarum mediarum arith-
              <lb/>
            meticè continuè proportionalium inter A & </s>
            <s xml:id="echoid-s3625" xml:space="preserve">B, & </s>
            <s xml:id="echoid-s3626" xml:space="preserve">ideo Z ea-
              <lb/>
            dem minor eſt, quod demonſtrare oportuit.</s>
            <s xml:id="echoid-s3627" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div197" type="section" level="1" n="95">
          <head xml:id="echoid-head131" xml:space="preserve">PROP. XXV. THEOREMA.</head>
          <p>
            <s xml:id="echoid-s3628" xml:space="preserve">Iisdem poſitis; </s>
            <s xml:id="echoid-s3629" xml:space="preserve">dico Z ſeu ſectorem
              <lb/>
              <note position="right" xlink:label="note-0161-01" xlink:href="note-0161-01a" xml:space="preserve">
                <lb/>
              A B # A B
                <lb/>
              C D # G H
                <lb/>
              E F # M N
                <lb/>
              K L # O P
                <lb/>
              Z # X
                <lb/>
              </note>
            hyperbolæ minorem eſſe quam mi-
              <lb/>
            nor duarum mediarum geometricè con-
              <lb/>
            tinuè proportionalium inter A & </s>
            <s xml:id="echoid-s3630" xml:space="preserve">B.
              <lb/>
            </s>
            <s xml:id="echoid-s3631" xml:space="preserve">Inter A & </s>
            <s xml:id="echoid-s3632" xml:space="preserve">B ſit media geometrica G,
              <lb/>
            & </s>
            <s xml:id="echoid-s3633" xml:space="preserve">inter G & </s>
            <s xml:id="echoid-s3634" xml:space="preserve">B media geometrica H; </s>
            <s xml:id="echoid-s3635" xml:space="preserve">
              <lb/>
            Item inter G & </s>
            <s xml:id="echoid-s3636" xml:space="preserve">H media geometrica M, & </s>
            <s xml:id="echoid-s3637" xml:space="preserve">inter M & </s>
            <s xml:id="echoid-s3638" xml:space="preserve">H media
              <lb/>
            geometriea N; </s>
            <s xml:id="echoid-s3639" xml:space="preserve">continueturque hæc ſeries convergens AB, GH,
              <lb/>
            MN, OP, &</s>
            <s xml:id="echoid-s3640" xml:space="preserve">c. </s>
            <s xml:id="echoid-s3641" xml:space="preserve">in infinitum ut fiat ejus terminatio X. </s>
            <s xml:id="echoid-s3642" xml:space="preserve">ſatis patet
              <lb/>
            ex prædictis C & </s>
            <s xml:id="echoid-s3643" xml:space="preserve">G eſſe inter ſe æquales, & </s>
            <s xml:id="echoid-s3644" xml:space="preserve">H majorem eſſe
              <lb/>
            quam D; </s>
            <s xml:id="echoid-s3645" xml:space="preserve">atque ob hanc rationem M media geometrica inter G
              <lb/>
            & </s>
            <s xml:id="echoid-s3646" xml:space="preserve">H major eſt quam E media geometrica inter C & </s>
            <s xml:id="echoid-s3647" xml:space="preserve">D. </s>
            <s xml:id="echoid-s3648" xml:space="preserve">Deinde
              <lb/>
            N media geometrica inter M & </s>
            <s xml:id="echoid-s3649" xml:space="preserve">H major eſt media harmonica
              <lb/>
            inter eaſdem; </s>
            <s xml:id="echoid-s3650" xml:space="preserve">& </s>
            <s xml:id="echoid-s3651" xml:space="preserve">quoniam M major eſt quam E & </s>
            <s xml:id="echoid-s3652" xml:space="preserve">H quam D, erit
              <lb/>
            media harmonica inter M & </s>
            <s xml:id="echoid-s3653" xml:space="preserve">H major quam F media harmo-
              <lb/>
            nica inter E & </s>
            <s xml:id="echoid-s3654" xml:space="preserve">D; </s>
            <s xml:id="echoid-s3655" xml:space="preserve">proinde N media geometrica inter M & </s>
            <s xml:id="echoid-s3656" xml:space="preserve">H
              <lb/>
            major eritquam F. </s>
            <s xml:id="echoid-s3657" xml:space="preserve">eadem methodo utramque ſeriem in in-
              <lb/>
            finitum continuando, ſemper demonſtratur terminum quem-
              <lb/>
            libet ſeriei A B, C D, minorem eſſe quam idem numero ter-
              <lb/>
            minus ſeriei A B, G H; </s>
            <s xml:id="echoid-s3658" xml:space="preserve">& </s>
            <s xml:id="echoid-s3659" xml:space="preserve">igitur terminatio ſeriei A B, C D,
              <lb/>
            nempe Z minor erit quam terminatio ſeriei A B, G H, nem-
              <lb/>
            pe X; </s>
            <s xml:id="echoid-s3660" xml:space="preserve">atque ex hujus 9 terminatio ſeriei A B, G H, ſeu X, æqua-
              <lb/>
            lis eſt minori duarum mediarum geometricè continuè propor-
              <lb/>
            tionalium inter A & </s>
            <s xml:id="echoid-s3661" xml:space="preserve">B; </s>
            <s xml:id="echoid-s3662" xml:space="preserve">& </s>
            <s xml:id="echoid-s3663" xml:space="preserve">ideo Z eadem minor eſt, quod
              <lb/>
            demonſtrare oportuit.</s>
            <s xml:id="echoid-s3664" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3665" xml:space="preserve">Ex dictis manifeſtum eſt hanc approximationem exactio-
              <lb/>
            rem eſſe illa, in antecedenti propoſitione, demonſtrata, et-
              <lb/>
            iamſi hæc ſit paulò laborioſior. </s>
            <s xml:id="echoid-s3666" xml:space="preserve">ſed non diſſimulandum
              <lb/>
            eſt duas poſſe eſſe ſeries æquales terminationes habentes, </s>
          </p>
        </div>
      </text>
    </echo>