Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
< >
page |< < (141) of 458 > >|
179141Conicor. Lib. VI. Quapropter duæ figuræ G I, H K ſunt æquales, & ſimiles. Quod erat
oſtendendum.
PROPOSITIO IV.
SImili modo demõſtrabitur, quod
11a duæ ſectiones oppoſitæ ſintſimi-
181[Figure 181] les, &
æquales.
Eo quod axis inclinatus eſt communis',
&
erecti ſunt æquales (16. ex 1.) & prot
2214. lib. 4. pterea earum figuræ æquales quoque ſun-
inter ſe.
Et hoc erat propoſitum.
PROPOSITIO X.
PAriter conſtat, quod ſi poten-
33a tiales cum ſuis abſciſſis cõpræ-
hendant angulos æquales obliquos,
eadem conſequentur, quæ prius dicta ſunt.
Et hoc erat propoſitum.
Notæ in Propoſit. I.
QVælibet duæ ſectiones parabolicæ,
182[Figure 182]44a vt A B, C D, quarum relationes
ſunt duo plana A L, C M, &

erecti earum A I, C N æquales.
ipſæ quo-
que ſunt æquales.
Si verò duæ illæ ſectio-
nes fuerint æquales, vtique earum appli-
cata, &
erecti erunt æquales, & c. Verba
illa propoſitionis (applicata ſunt duo plana
A L, C M, &
c.) caſu in textum irrepſiſſe
puto, eo quod rectangula illa A L, C M, ne-
dum æqualia non ſupponuntur, ſed è contra.
conſtruuntur, atque demonſtrantur æqualia eſ-
ſe inter ſe.
Quia ſi ponamus ſagittam C H ſuper ſa-
55b gittã A G, cadet ſectio C D ſuper ſectio-
nem A B:
11 verò non cadit ſuper illam,
ſignemus ſuper literam, in quam non ca-
dit punctum D:
& c. Sic legendũ puto.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index