Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota

Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
< >
page |< < (194) of 569 > >|
214194GEOMETRIÆ. n. nabemus parallelepipedum ſub, AB, & rectangulo, ADC, &
ſub, AB, &
rectingulo, BCD,. . ſub, BC, & rectangulo ſub, A
B, CD, cui ſi iunxeris parallelepipedum ſub, BC, &
rectangulo ſub,
BD, DC, componeour parallelepipedum ſub, BC, &
rectangulo,
129[Figure 129] ADC, quod additum parallele-
pipedo ſub, AB, &
eodem re-
ctangulo, ADC, componet pa-
1135. huius. rallelepipedum ſub, AC, &
re-
ctangulo, ADC, quod quidem
æquale erit alteri ſummæ prædi-
ctæ, nempè parallelepipedo ſub,
BC, &
rectangulo ſub, BD, D
C, vna cum, {1/3}, cubi, BC, ergo &
eorum tripla æqualia erunt ſci-
licet parallelepipedum ter ſub, AC, &
rectangulo, ADC, ſeu ter
22Schol. 35.
huius.
ſub, AD, &
rectangulo, ACD, æquabitur parallelepipedo ter ſub,
BC, &
rectangulo, BDC, ſeu ter ſub, BD, & rectangulo, BCD,
cum cubo, BC, additis verò communibus cubis, AC, CD, fiet pa-
3338. huius. rallelepipedum ter ſub, AD, &
rectangulo, ACD, cum cubis, A
C, CD, ideſt totus cubus, AD, æqualis parallelepipedo ter ſub, B
4438. huius. D, &
rectangulo, BCD, cum cubis, BC, CD, (quæ integrant
cubum, BD,) &
cum cubo, AC, eſt igitur cubus, AD, æqualis
duobus cubis, AC, BD.
Poſſibile eſt ergo facere, quod propoſi-
tum fuit.
COROLLARIVM.
EX hoc manifeſtum eſt, ſi, AC, ſit latus dati cubi, & ſit etiam da-
tarecta linea, vt, AB, minor, AC, poſſibile eſſe inuenire duos
eubos, vt, AD, DB, ita vt eorum differentia ſit æqualis cubo dato,
AC, &
laterun cubicorum, AD, DB, ſcilicet, AB, pariter diffe-
rentia ſit data, eſt.
n. cubus, AC, æqualis dictæ cuborum, AD, DB,
differentiæ, vt eſtenſum eſt.
Cum verò ſimilia ſolida quæunq; ſint in
tripla ratione linearum, ſeu later um bomologorum eorumdem, ideò
erunt, vt cubi ipſarum linearum, ſeu laterum bomologoroum, &
ideò
eandem rationem, quam babet cubus, AD, ad cubum, DB, babebit
ex.
gr. Icoſaedrum deſcriptum latere, AD, ad Icoſaedrum deſoriptum
latere, BD, prædicto bomologo, &
vt cubus, AD, ad cubum, AC,
ita erit Icoſaedrum, AD, ad Icoſaedrum, AC, nec non colligendo, vt
cubus, AD, ad cubos, AC, BD, ita erit Icoſaedrum, AD, ad Ico-
ſaedra, AC, BD, ergo Icoſaedrum, AD, æquabitur Icoſaedris, AC,
BD, &
ſuperabit Icoſaedrum, BD, Icoſaedro, AC, ergo ſi datum

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index