Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota

Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
< >
page |< < (201) of 569 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div501" type="section" level="1" n="302">
          <p>
            <s xml:id="echoid-s4941" xml:space="preserve">
              <pb o="201" file="0221" n="221" rhead="LIBER III."/>
            ad rectangulum ſub, BM, &</s>
            <s xml:id="echoid-s4942" xml:space="preserve">, MOA, quod verum eſſe oſtendetur,
              <lb/>
            vt in antecedente, etiam ſi parallelogrammum, DN, non ſit circa
              <lb/>
            axim, vel diametrum, BM, vnde patet, &</s>
            <s xml:id="echoid-s4943" xml:space="preserve">c.</s>
            <s xml:id="echoid-s4944" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div503" type="section" level="1" n="303">
          <head xml:id="echoid-head320" xml:space="preserve">THEOREMA III. PROPOS. III.</head>
          <p>
            <s xml:id="echoid-s4945" xml:space="preserve">SI intra circulum, velellipſim, duæ ad axim, vel diame-
              <lb/>
            trum ordinatim applicentur rectæ lineę, ſit autem paral-
              <lb/>
            lelogrammum, & </s>
            <s xml:id="echoid-s4946" xml:space="preserve">triangulum in eadem altitudine cum por-
              <lb/>
            tione inter applicatas concluſa, ſed in baſi altera applicata-
              <lb/>
            rum: </s>
            <s xml:id="echoid-s4947" xml:space="preserve">Omnia quadrata dicti parallelogrammia ad omnia qua-
              <lb/>
            drata concluſę portionis (regula baſi) erunt, vt rectangulum
              <lb/>
            ſub partibus axis, vel diametri per baſim conſtitutis ad re-
              <lb/>
            ctangulum ſub abſciſſa per baſim ab extremitate axis, vel
              <lb/>
            diametri, & </s>
            <s xml:id="echoid-s4948" xml:space="preserve">ſub compoſita ex medietate portionis axis, vel
              <lb/>
            diametri eiſdem applicatis intermedię, & </s>
            <s xml:id="echoid-s4949" xml:space="preserve">abſciſſa per aliam
              <lb/>
            applicatam ab eiuſdem extremitate, vna cum rectangulo ſub
              <lb/>
            eadem intermedia, & </s>
            <s xml:id="echoid-s4950" xml:space="preserve">ſub compoſita ex, @, eiuſdem, &</s>
            <s xml:id="echoid-s4951" xml:space="preserve">, {1/2}, ab-
              <lb/>
            ſciſſæ per eandem applicatam ab eiuſdem extremitate: </s>
            <s xml:id="echoid-s4952" xml:space="preserve">Om-
              <lb/>
            nia verò quadrata incluſę portionis ad omnia quadrata dicti
              <lb/>
            trianguli erunt, vt rectangulum ſub compoſita ex abſciſſis ab
              <lb/>
            axi, vel diametro per ordinatim applicatas verſus terminum,
              <lb/>
            cui baſis propinquior eſt, & </s>
            <s xml:id="echoid-s4953" xml:space="preserve">ſub ſexquialtera abſciſſæ ab alio
              <lb/>
            extremo per applicatam, quę non eſt baſis, vna cum rectan-
              <lb/>
            gulo ſub huius reliqua, & </s>
            <s xml:id="echoid-s4954" xml:space="preserve">ſub dupla abſciſſę per baſim ab ex-
              <lb/>
            tremo, cui ipſa baſis propinquior eſt, ad rectangulum ſub
              <lb/>
            partibus axis, vel diametri per baſim conſtitutis.</s>
            <s xml:id="echoid-s4955" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4956" xml:space="preserve">Sit ergo circulus, velellipſis, ACDF,
              <lb/>
              <figure xlink:label="fig-0221-01" xlink:href="fig-0221-01a" number="134">
                <image file="0221-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0221-01"/>
              </figure>
            centrum, O, axis, vel diameter, AD, duæ
              <lb/>
            ad ipſam ordinatim applicatæ ſint, IS, C
              <lb/>
            F, intercipientes portionem, ICFS, ſit
              <lb/>
            autem parallelogrammum, BF, in baſi
              <lb/>
            vtrauis applicatarum, vt in, CF, & </s>
            <s xml:id="echoid-s4957" xml:space="preserve">eadem
              <lb/>
            altitudine cum fruſto, CISF, ſit etiam
              <lb/>
            nunc circa axim, vel diametrum, MR, re-
              <lb/>
            gula verò, CF; </s>
            <s xml:id="echoid-s4958" xml:space="preserve">Dico ergo omnia quadra-
              <lb/>
            ta parallelogrammi, BF, ad omnia qua-
              <lb/>
            drata portionis, ICFS, eſſe vt rectangulum, DRA, ad </s>
          </p>
        </div>
      </text>
    </echo>