Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota

Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
< >
page |< < (203) of 569 > >|
223203LIBER III. ctangula triplicata, rectangulum autem ſub, DR, & ſub compoſi-
111. 2. elem. ta ex, {1/2}, RM, &
, MA, diuiditur in rectangula ſub, DR, & , {1/2}, R
M, &
ſub, DR, & , MA, triplicetur rectangulum ſub, DR, & ,
221. 2. elem. {1/2}, RM, fit rectangulum ſub tripla, DR, &
ſub, {1/2}, RM, cui ſi ad-
datur rectangulum ſub, MR, &
, {1/2}, RM, fit rectangulum ſub com-
poſita ex tripla, RD, &
ex, RM, . ſ. ſub compoſita ex, MD, &
dupla, RD, &
ſub, {1/2}, RM, quod ſerua: Remanent rectangula ad-
337. Lib. 2. huc ſub, DR, MA, &
ſub, MR, & , {1/2}, MA, triplicanda, quod
ſic fiet;
rectangulum ſub, DR, MA, æquatur rectangulo ſub dupla,
441. 2. ele@. DR, &
, {1/2}, MA, cui ſi addatur rectangulum ſub, {1/2}, MA, & ſub,
MR, fiet rectangulum ſub, {1/2}, MA, &
ſub compoſita ex, MR, &
dupla, RD, .
ſ. ſub compoſita ex, MD, DR, quod triplicatum fit
rectangulum ſub compoſita ex, MD, DR, &
ſub ſexquialtera, M
A, quod ſimul cum rectangulo ſub compoſita ex, MD, &
dupla, D
R, &
ſub, {1/2}, MR, ad rectangulum, DRA, conuertendo, habe-
bit eandem rationem, quam omnia quadrata portionis, ICFS, ad
omnia quadrata trianguli, CMF;
quod etiam verificabitur, ſi di-
55Ex 9. & @.
Coroll.
22. lib. 2@
ctum parallelogrammum, &
triangulum, ſint quidem in eadem baſi
cum portione, ſed non circa eundem axim, vel diametrum cum ea-
dem portione, vt ſupra patere poteſt in antecedentibus, quod erat
oſtendendum.
THEOREMA IV. PROPOS. IV.
IN eadem antecedentis figura ſi parallelogrammum ſit
quidem in eadem altitudine cum portione, ſed in baſi æ-
quali ſecundæ diametro;
omnia quadrata dicti parallelo-
grammiad omnia quadrata dictę portionis erunt, vt quadra-
tum dimidijaxis, vel diametri eorumdem ad eadem conſe-
quentia rectangula, retenta eadem regula.
Exponatur denuò antece@entis figura,
136[Figure 136]&
producatur, CF, ita vt, V @, ſit æqua-
lis ſecundæ diametro, quæ ſit, EH, &
,
VR, æqualis, RX, &
in, VX, baſi ſit
conſtructum parallelogrammum, GX,
in altitudine eadem cum portione, ICF
S, ſit etiam circa eandem axim, vel dia-
metrum, MR, cum portione, IECFH
S:
Omnia ergo quadrata parallelogram-
mi, GR, ad omnia quadrata parallelogrammi, BR, (regula, CF,)
669. Lib. 2.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index