Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 568
>
161
(434)
162
(435)
163
(436)
164
(437)
165
(438)
166
(439)
167
(440)
168
(441)
169
(442)
170
(443)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 568
>
page
|<
<
(493)
of 568
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div249
"
type
="
section
"
level
="
1
"
n
="
122
">
<
p
>
<
s
xml:id
="
echoid-s4658
"
xml:space
="
preserve
">
<
pb
o
="
493
"
file
="
0215
"
n
="
226
"
rhead
="
GEOMET. VARIA.
"/>
nihil opus eſſe deſcribi, cum utrobique mox delendi forent,
<
lb
/>
atque adeo illos tantum ſcribendos in quibus unum e vel plu-
<
lb
/>
ra inſunt, ut in exemplo noſtro - 2ce + 4ex + 2ee; </
s
>
<
s
xml:id
="
echoid-s4659
"
xml:space
="
preserve
">eoſ-
<
lb
/>
que æquandos nihilo. </
s
>
<
s
xml:id
="
echoid-s4660
"
xml:space
="
preserve
">Sed etiam illos quibus plura quam u-
<
lb
/>
num e inerunt, ſcribi ſruſtra apparet, cum diviſione facta
<
lb
/>
per e delendos poſtea conſtet, ut paulò ante diximus. </
s
>
<
s
xml:id
="
echoid-s4661
"
xml:space
="
preserve
">Ita-
<
lb
/>
que nulli præterea ab initio deſcribendi inter terminos poſte-
<
lb
/>
riores quam quibus inerit e ſimplex.</
s
>
<
s
xml:id
="
echoid-s4662
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4663
"
xml:space
="
preserve
">Hi autem termini ex terminis prioribus facilè deducuntur,
<
lb
/>
cum conſtet nihil aliud eſſe quam ſecundos terminos poteſta-
<
lb
/>
tum ab x + e, quia cæteri omnes plura quam unum e vel nullum
<
lb
/>
habent. </
s
>
<
s
xml:id
="
echoid-s4664
"
xml:space
="
preserve
">Adeo ut ubicunque in prioribus terminis habe-
<
lb
/>
tur x, ſcribendum ſit in poſterioribus e; </
s
>
<
s
xml:id
="
echoid-s4665
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4666
"
xml:space
="
preserve
">ubi habe-
<
lb
/>
tur xx in prioribus, ponendum 2ex in poſterioribus; </
s
>
<
s
xml:id
="
echoid-s4667
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4668
"
xml:space
="
preserve
">ubi
<
lb
/>
x
<
emph
style
="
super
">3</
emph
>
in prioribus, in poſterioribus 3exx, atque ita deinceps.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4669
"
xml:space
="
preserve
">Dicti autem termini ſecundi cujuſque poteſtatis x + e exipſa
<
lb
/>
poteſtate x facilè deſcribuntur mutando unum x in e, & </
s
>
<
s
xml:id
="
echoid-s4670
"
xml:space
="
preserve
">
<
lb
/>
præponendo numerum dimenſionum ipſius x, ita enim ab
<
lb
/>
xx fit 2ex, & </
s
>
<
s
xml:id
="
echoid-s4671
"
xml:space
="
preserve
">ab x
<
emph
style
="
super
">3</
emph
>
, 3exx; </
s
>
<
s
xml:id
="
echoid-s4672
"
xml:space
="
preserve
">atque in cæteris pari modo. </
s
>
<
s
xml:id
="
echoid-s4673
"
xml:space
="
preserve
">
<
lb
/>
Itaque ex terminis prioribus in quibus x, quos ſolos conſi-
<
lb
/>
derandos eſſe patuit, facilè etiam termini poſteriores, ii
<
lb
/>
quos nihilo adæquandos diximus, deſcribuntur; </
s
>
<
s
xml:id
="
echoid-s4674
"
xml:space
="
preserve
">multipli-
<
lb
/>
cando tantum ſingulos in numerum dimenſionum quas in ipſis
<
lb
/>
habet x. </
s
>
<
s
xml:id
="
echoid-s4675
"
xml:space
="
preserve
">Nam mutare unum x in e ne quidem opus eſt, cum
<
lb
/>
eodem redeat, ſive omnes poſtea per e ſive per x dividan-
<
lb
/>
tur, & </
s
>
<
s
xml:id
="
echoid-s4676
"
xml:space
="
preserve
">ex his quidem aperta eſt ratio compendii ad primam
<
lb
/>
partem regulæ pertinentis: </
s
>
<
s
xml:id
="
echoid-s4677
"
xml:space
="
preserve
">nunc ad alteram veniamus quæ
<
lb
/>
eſt hujuſmodi.</
s
>
<
s
xml:id
="
echoid-s4678
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4679
"
xml:space
="
preserve
">Si termini quos maximum aut minimum deſignare volu-
<
lb
/>
mus fractiones habeant in quarum denominatore occurrat
<
lb
/>
quantitas incognita, delendæ primùm ſunt quantitates co-
<
lb
/>
gnitæ ſi quæ adſint; </
s
>
<
s
xml:id
="
echoid-s4680
"
xml:space
="
preserve
">deinde ſi reliquæ quantitates non ha-
<
lb
/>
beant eundem denominatorem, eò reducendæ ſunt. </
s
>
<
s
xml:id
="
echoid-s4681
"
xml:space
="
preserve
">Tunc
<
lb
/>
termini ſinguli numeratorem fractionis conſtituentes, du-
<
lb
/>
cendi in terminos ſingulos denominatoris, productaque
<
lb
/>
ſingula multipla ſumenda ſecundum numerum quo </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>