Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Table of figures

< >
[131] Fig. 12.* 29. Apr.
[132] Fig. 13.* 3. Maii.
[133] Fig. 14.* 6. Maii.
[134] Fig. 15.* 7. Maii.
[135] Fig. 16.* 10. Maii.
[136] Fig. 17.* 11. Maii.
[137] Fig. 18.* 12. Maii.
[138] Fig. 19.* 14. Maii.
[139] Fig. 20.* 15. Maii.
[140] Fig. 21.* 18. Maii.
[141] Fig. 22.* 19. Maii.
[142] Fig. 23.* 20. Maii.
[143] Fig. 24.* c a * 27. Maii.
[144] Fig. 25.c * 31. Maii. a *
[145] Fig. 26.* 13. Iun.
[146] Fig. 27.* 16. Ian. 1656.
[147] Fig. 28.* 19. Febr.
[148] Fig. 29.* 16. Mart.
[149] Fig. 30.* 30. Mart.
[150] Fig. 31.* 18. Apr.
[151] Fig. 32.* 17. Iun.
[152] Fig. 33.* 19. Oct.
[153] Fig. 34.* 21. Oct.
[154] Fig. 35.* 9. Nov.
[155] Fig. 36.* 27. Nov.
[156] Fig. 37.* 16. Dec.
[157] Fig. 38.* 18. Ian. 1657.
[158] Fig. 39.* 29. Mart.
[159] Fig. 40.* 30. Mart.
[160] Fig. 41.* 18. Maii.
< >
page |< < (498) of 568 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div249" type="section" level="1" n="122">
          <p>
            <s xml:id="echoid-s4750" xml:space="preserve">
              <pb o="498" file="0220" n="231" rhead="CHRIST. HUGENII"/>
            id ex hoc ſequenti exemplo intelligetur rectè præcipi. </s>
            <s xml:id="echoid-s4751" xml:space="preserve">Sint
              <lb/>
            enim reperti termini priores, quos maximum aut mini-
              <lb/>
            mum deſignare oporteat, iſti {x
              <emph style="super">3</emph>
            /2a - x} - 2vx + xx + vv;
              <lb/>
            </s>
            <s xml:id="echoid-s4752" xml:space="preserve">ubi vv quantitatem cognitam ſignificet: </s>
            <s xml:id="echoid-s4753" xml:space="preserve">id igitur delendum
              <lb/>
            eſſe ut appareat, videamus quid futurum ſit ſi non delea-
              <lb/>
            tur. </s>
            <s xml:id="echoid-s4754" xml:space="preserve">Nempe ut ad eundem denominatorem cum cæteris
              <lb/>
            omnibus reducatur, ducendum erit vv in 2a - x, fietque
              <lb/>
            inde {2avv - xvv/2a - x} in terminis prioribus. </s>
            <s xml:id="echoid-s4755" xml:space="preserve">Propter quos in
              <lb/>
            terminis poſterioribus, ſecundum ſuperius, explicata ſcribetur
              <lb/>
            {- evv/- e}, adeoque multiplicatione alternatim utrinque per
              <lb/>
            denominatores inſtituta, ducendum erit hinc 2a - x in
              <lb/>
            - evv; </s>
            <s xml:id="echoid-s4756" xml:space="preserve">inde - e in 2avv - xvv. </s>
            <s xml:id="echoid-s4757" xml:space="preserve">Ex quibus multiplica-
              <lb/>
            tionibus eoſdem utrinque terminos oriri neceſſe eſt, cum
              <lb/>
            utrobique eadem hæc tria in ſe mutuo ducantur 2a - x in
              <lb/>
            - e in vv, qui proinde termini ſe ſe mutuo ſublaturi eſſent,
              <lb/>
            eoque fruſtra ſcriberentur; </s>
            <s xml:id="echoid-s4758" xml:space="preserve">ac proinde liquet tuto deleri
              <lb/>
            poſſe ab initio quantitatem vv, idemque quod in hoc exem-
              <lb/>
            plo accidit, neceſſario quoque in quibuslibet aliis continge-
              <lb/>
            re, diligenter intuenti manifeſtum erit.</s>
            <s xml:id="echoid-s4759" xml:space="preserve"/>
          </p>
          <figure number="90">
            <image file="0220-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0220-01"/>
          </figure>
        </div>
        <div xml:id="echoid-div251" type="section" level="1" n="123">
          <head xml:id="echoid-head168" xml:space="preserve">III.</head>
          <head xml:id="echoid-head169" xml:space="preserve">REGULA</head>
          <head xml:id="echoid-head170" style="it" xml:space="preserve">Ad inveniendas Tangentes linearum curvarum.</head>
          <p>
            <s xml:id="echoid-s4760" xml:space="preserve">IDem Fermatius linearum curvarum Tangentes regula ſibi
              <lb/>
            peculiari inquirebat, quam Carteſius ſuſpicabatur non ſa-
              <lb/>
            tis ipſum intelligere quo fundamento niteretur, ut ex epiſto-
              <lb/>
            lis ejus hac de re ſcriptis apparet. </s>
            <s xml:id="echoid-s4761" xml:space="preserve">Sanè in Fermatii operi-
              <lb/>
            bus poſt mortem editis, ncc bene expoſitus eſt regulæ uſus,
              <lb/>
            nec demonſtrationem ullam adjectam habet. </s>
            <s xml:id="echoid-s4762" xml:space="preserve">Carteſium ve-
              <lb/>
            ro in his quas dixi literis, rationem ejus aliquatenus aſſecu-
              <lb/>
            tum invenio, nec tamen tam perſpicuè eam explicuiſſe </s>
          </p>
        </div>
      </text>
    </echo>