Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 1: Opera mechanica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 434
>
221
(140)
222
(141)
223
(142)
224
225
226
227
(143)
228
(144)
229
(145)
230
(146)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 434
>
page
|<
<
(148)
of 434
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div286
"
type
="
section
"
level
="
1
"
n
="
105
">
<
pb
o
="
148
"
file
="
0212
"
n
="
232
"
rhead
="
CHRISTIANI HUGENII
"/>
</
div
>
<
div
xml:id
="
echoid-div291
"
type
="
section
"
level
="
1
"
n
="
106
">
<
head
xml:id
="
echoid-head132
"
xml:space
="
preserve
">PROPOSITIO XVI.</
head
>
<
note
position
="
left
"
xml:space
="
preserve
">
<
emph
style
="
sc
">De centro</
emph
>
<
lb
/>
<
emph
style
="
sc
">OSCILLA-</
emph
>
<
lb
/>
<
emph
style
="
sc
">TIONIS</
emph
>
.</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s3347
"
xml:space
="
preserve
">FIgura quævis, ſive linea fuerit, ſive ſuperſi-
<
lb
/>
cies, ſive ſolidum; </
s
>
<
s
xml:id
="
echoid-s3348
"
xml:space
="
preserve
">ſi aliter at que aliter ſuſpen-
<
lb
/>
datur, agiteturque ſuper axibus inter ſe paralle-
<
lb
/>
lis, quique à centro gravitatis figuræ æqualiter di-
<
lb
/>
ſtent, ſibi ipſi iſochrona eſt.</
s
>
<
s
xml:id
="
echoid-s3349
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3350
"
xml:space
="
preserve
">Proponatur magnitudo quævis, cujus centrum gravitatis
<
lb
/>
E punctum, ſitque primo ſuſpenſa ab axe, qui per F intel-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0212-02
"
xlink:href
="
note-0212-02a
"
xml:space
="
preserve
">TAB. XXI.
<
lb
/>
Fig. 3.</
note
>
ligitur hujus paginæ plano ad angulos rectos. </
s
>
<
s
xml:id
="
echoid-s3351
"
xml:space
="
preserve
">Itaque idem
<
lb
/>
planum erit & </
s
>
<
s
xml:id
="
echoid-s3352
"
xml:space
="
preserve
">planum oſcillationis. </
s
>
<
s
xml:id
="
echoid-s3353
"
xml:space
="
preserve
">In quo ſi centro E, ra-
<
lb
/>
dio E F, deſcribatur circumferentia F H G, ſumptoque in
<
lb
/>
illa puncto quovis, ut H, magnitudo ſecundò ſuſpendi intel-
<
lb
/>
ligatur ab axe in hoc puncto infixo, atque agitari, manente
<
lb
/>
eodem oſcillationis plano. </
s
>
<
s
xml:id
="
echoid-s3354
"
xml:space
="
preserve
">Dico iſochronam fore ſibi ipſi agi-
<
lb
/>
tatæ circa axem in F.</
s
>
<
s
xml:id
="
echoid-s3355
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3356
"
xml:space
="
preserve
">Intelligatur enim dividi magnitudo propoſita in particu-
<
lb
/>
las minimas æquales. </
s
>
<
s
xml:id
="
echoid-s3357
"
xml:space
="
preserve
">Itaque, quia in utraque illa ſuſpenſio-
<
lb
/>
ne idem manet oſcillationis planum, reſpectu partium ma-
<
lb
/>
gnitudinis; </
s
>
<
s
xml:id
="
echoid-s3358
"
xml:space
="
preserve
">manifeſtum eſt, ſi ab omnibus particulis, in quas
<
lb
/>
diviſa eſt magnitudo, perpendiculares cadere concipiantur
<
lb
/>
in dictum oſcillationis planum, illas utraque ſuſpenſione oc-
<
lb
/>
currere ipſi in punctis iisdem. </
s
>
<
s
xml:id
="
echoid-s3359
"
xml:space
="
preserve
">Sint autem hæc puncta ea
<
lb
/>
quæ apparent in ſpatio A B C D.</
s
>
<
s
xml:id
="
echoid-s3360
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3361
"
xml:space
="
preserve
">Quum igitur E ſit centrum gravitatis magnitudinis pro-
<
lb
/>
poſitæ, ipſaque proinde circa axem, qui per E punctum
<
lb
/>
erectus eſt ad planum A B C D, quovis ſitu æquilibrium
<
lb
/>
ſervet; </
s
>
<
s
xml:id
="
echoid-s3362
"
xml:space
="
preserve
">facile perſpicitur, quod ſi punctis omnibus ante di-
<
lb
/>
ctis, quæ in ſpatio A B C D ſignantur, æqualis gravitas
<
lb
/>
tribuatur, eorum quoque omnium centrum gravitatis futu-
<
lb
/>
rum eſt punctum E. </
s
>
<
s
xml:id
="
echoid-s3363
"
xml:space
="
preserve
">Quod ſi vero, ut fieri poteſt, in pun-
<
lb
/>
cta aliqua plures perpendiculares coincidant, illa puncta
<
lb
/>
quaſi toties geminata intelligenda ſunt, gravitatesque toties
<
lb
/>
multiplices accipiendæ. </
s
>
<
s
xml:id
="
echoid-s3364
"
xml:space
="
preserve
">Atque ita conſideratorum, patet
<
lb
/>
rurſus centrum gravitatis eſſe E punctum.</
s
>
<
s
xml:id
="
echoid-s3365
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>