Casati, Paolo, Fabrica, et uso del compasso di proportione, dove insegna à gli artefici il modo di fare in esso le necessarie divisioni, e con varij problemi ...

List of thumbnails

< >
241
241 (219)
242
242 (220)
243
243 (221)
244
244 (222)
245
245 (223)
246
246 (224)
247
247 (225)
248
248 (226)
249
249 (227)
250
250 (228)
< >
page |< < (226) of 279 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div141" type="section" level="1" n="80">
          <p>
            <s xml:id="echoid-s4289" xml:space="preserve">
              <pb o="226" file="0244" n="248" rhead="CAPO IX."/>
            tali quadrati applicato il Compaſſo, ſi troui poi nella linea
              <lb/>
            Aritmetica la ſua quantità in parti homologhe al raggio della
              <lb/>
            sfera, e per conſeguenza al lato del corpo, che ſicerca.
              <lb/>
            </s>
            <s xml:id="echoid-s4290" xml:space="preserve">E queſta è l’altezza della piramide triangolare. </s>
            <s xml:id="echoid-s4291" xml:space="preserve">Quarto, per-
              <lb/>
            che la piramide per la 7. </s>
            <s xml:id="echoid-s4292" xml:space="preserve">del 12 è la terza parte del priſma,
              <lb/>
            che hà l’iſteſſa baſe, e la iſteſſa altezza, ſi moltiplichi l’area
              <lb/>
            trouata del triangolo per la terza parte di queſta altezza tro-
              <lb/>
            uata, e ſarà la ſolidità della piramide. </s>
            <s xml:id="echoid-s4293" xml:space="preserve">Finalmente queſta ſo-
              <lb/>
            lidità trouata ſi moltiplichi per il numero delle faccie del cor-
              <lb/>
            po regolare, che ſi cerca, e s’haurà tutta la ſolidità di detto
              <lb/>
            corpo; </s>
            <s xml:id="echoid-s4294" xml:space="preserve">e per conſeguenza la proportione, che hà alla sfera.</s>
            <s xml:id="echoid-s4295" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4296" xml:space="preserve">Ciò che s’è detto de’corpi, le cui faccie ſono triangolari, ſi
              <lb/>
            deue proportionata mente intendere del dodecaedro, le cui
              <lb/>
            faccie ſono pentagone: </s>
            <s xml:id="echoid-s4297" xml:space="preserve">perche trouato il lato del dodecae-
              <lb/>
            dro, che è il lato del pentagono, ſi troua il raggio del circolo,
              <lb/>
            in cui capiſce detto pentagono, e diuiſo per metà il lato del
              <lb/>
            pentagono in eſſo cade ſa perpendicolare dal centro, la qua-
              <lb/>
            le può il quadrato, che è differenza trà il quadrato del rag-
              <lb/>
            gio trouato del circolo, & </s>
            <s xml:id="echoid-s4298" xml:space="preserve">il quadrato della metà del lato del
              <lb/>
            pentagono: </s>
            <s xml:id="echoid-s4299" xml:space="preserve">e cosi
              <unsure/>
            4; </s>
            <s xml:id="echoid-s4300" xml:space="preserve">ſi troua l’area d’vno de’cinque triangoli
              <lb/>
            iſoſceli, ne’quali ſi diuide il pentagono; </s>
            <s xml:id="echoid-s4301" xml:space="preserve">onde ſi vien à cono-
              <lb/>
            ſcerel’area di detto pentagono. </s>
            <s xml:id="echoid-s4302" xml:space="preserve">Poi dal quadrato del raggio
              <lb/>
            della sfera leuato il quadrato del raggio di detto circolo, re-
              <lb/>
            ſta il quadrato della linea, che dal centro della sfera cade
              <lb/>
            perpendicolarmente nel piano pentagonico, & </s>
            <s xml:id="echoid-s4303" xml:space="preserve">è l’altezza
              <lb/>
            della piramide, che è la duodecima parte dell’octaedro: </s>
            <s xml:id="echoid-s4304" xml:space="preserve">co-
              <lb/>
            me è manifeſto.</s>
            <s xml:id="echoid-s4305" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4306" xml:space="preserve">Quanto poi al cubo è manifeſto, ch’egli è alla sfera dello
              <lb/>
            ſteſſo diametro con il ſato del cubo, come 21 à 11, come s’oſ-
              <lb/>
            ſeruò nel Cap. </s>
            <s xml:id="echoid-s4307" xml:space="preserve">5. </s>
            <s xml:id="echoid-s4308" xml:space="preserve">queſt. </s>
            <s xml:id="echoid-s4309" xml:space="preserve">2. </s>
            <s xml:id="echoid-s4310" xml:space="preserve">Mà il cubo inſcritto nella sfera </s>
          </p>
        </div>
      </text>
    </echo>