264Definitiones, oder Erklärungen
ausgeſprochen und geſchrieben:
40°:
35′:
49″:
57″′.
40.
Grad, 35.
Mi-
nuten, 49. Secunden, und 57. Tertien. Dieſe Theilung iſt dienlich die
Gröſſen der Winkel zu meſſen; die Eintheilung in Secunden und Ter-
tien, braucht man bey groſſen Peripherien.
nuten, 49. Secunden, und 57. Tertien. Dieſe Theilung iſt dienlich die
Gröſſen der Winkel zu meſſen; die Eintheilung in Secunden und Ter-
tien, braucht man bey groſſen Peripherien.
Die Eröfnung zwoer Linien, aus einem gemeinſchaftlichen Punct, heiſt ein
Winkel. (Angulus) Das Zeichen eines Winkels iſt L.
Winkel. (Angulus) Das Zeichen eines Winkels iſt L.
Die beyden Linien, welche dieſen Winkel machen, heiſſen die Schenkel (cru-
ra) des Winkels, und wo ſie zuſammen lauffen, die Spitze derſelben.
ra) des Winkels, und wo ſie zuſammen lauffen, die Spitze derſelben.
Wenn die beyden Linien, welche den Winkel einſchlieſſen, gerade ſind, ſo
11Fig. 12. wird er ein geradlienigter Winkel (angulus planus) genennet.
11Fig. 12. wird er ein geradlienigter Winkel (angulus planus) genennet.
Wenn die Linien krumm ſind, welche den Winkel einſchlieſſen, ſo nennet
22Fig. 13. man ihn einen krummlinigten Winkel. (angelum curvilineum)
22Fig. 13. man ihn einen krummlinigten Winkel. (angelum curvilineum)
Wenn von den zwo Linien, welche den Winkel einſchlieſſen, die eine krumm,
33Fig. 14. die andere aber grad iſt, ſo wird der Winkel ein vermiſchter Winkel
(angulus mixtus, ſeu mixtilineus) genennet; Es mag die Krümme gleich
ein- oder auswärts gehen.
33Fig. 14. die andere aber grad iſt, ſo wird der Winkel ein vermiſchter Winkel
(angulus mixtus, ſeu mixtilineus) genennet; Es mag die Krümme gleich
ein- oder auswärts gehen.
Das Maas eines geradelinigten Winkels, iſt der Bogen eines Cireuls, der
44Fig. 15. aus ſeinem Mittelpunct beſchrieben wird, und iſt ſo groß, als groß der Bo-
gen ein Stuck iſt von ſeinem Circul. Es gilt gleich viel, es mag der Cir-
cul groß oder klein ſeyn, ſo hält er 360°, daher muß auch ein gleich groſſes
Stuck, eines groſſen oder kleinen Circuls, eine gleiche Anzahl Grade ha-
ben. Z. E. das Stuck B C, in dem kleinem Circul, hält eben ſo wohl 60°.
oder den ſechſten T@heil von der ganzen Peripherie, als es der groſſe Cir-
cul B C, hält. Daraus folgt, daß der Winkel B A C gemeinſchäftlich iſt,
und auch 60°. halten muß.
44Fig. 15. aus ſeinem Mittelpunct beſchrieben wird, und iſt ſo groß, als groß der Bo-
gen ein Stuck iſt von ſeinem Circul. Es gilt gleich viel, es mag der Cir-
cul groß oder klein ſeyn, ſo hält er 360°, daher muß auch ein gleich groſſes
Stuck, eines groſſen oder kleinen Circuls, eine gleiche Anzahl Grade ha-
ben. Z. E. das Stuck B C, in dem kleinem Circul, hält eben ſo wohl 60°.
oder den ſechſten T@heil von der ganzen Peripherie, als es der groſſe Cir-
cul B C, hält. Daraus folgt, daß der Winkel B A C gemeinſchäftlich iſt,
und auch 60°. halten muß.
Alle Winkel gehören unter die drey folgenden Arten:
ſie ſind entweder gera-
de, (recti) ſpizige (acuti) oder ſtumpfe. (obtuſi)
de, (recti) ſpizige (acuti) oder ſtumpfe. (obtuſi)
Ein rechter Winkel (angulus rectus) iſt, wenn die Eröfnung der Linien, die
55Fig. 16. Helfte des halben Circuls betragt, 90°. mißt, und alſo der vierte Theil des
ganzen Circuls iſt.
55Fig. 16. Helfte des halben Circuls betragt, 90°. mißt, und alſo der vierte Theil des
ganzen Circuls iſt.
Ein ſpitziger Winkel, (angulus acutus) iſt, wenn die Eröfnung weniger als
66Fig. 17. einen halben Circul, und auch weniger als 90°. beträgt.
66Fig. 17. einen halben Circul, und auch weniger als 90°. beträgt.
Ein ſtumpfer Winkel, (angulus obtuſus) iſt, wenn die Eröfnung mehr als
77Fig. 18. die Helfte des halben Circuls, und auch mehr als 90°. beträ@t.
77Fig. 18. die Helfte des halben Circuls, und auch mehr als 90°. beträ@t.
Kein Winkel, er ſey ſo ſtumpf als er will, kan 180°.
groß ſeyn, denn dieſes
iſt das Maas des halben Circuls; denn ſo bald zwo Linien ſo weit von ein-
ander ſtehen, daß ſie einander nicht mehr ſchneiden, ſo fallen ſie in einander,
und machen eine gerade Linie, welches der Durchmeſſer (Diameter) des
Circuls ſelbſt iſt.
iſt das Maas des halben Circuls; denn ſo bald zwo Linien ſo weit von ein-
ander ſtehen, daß ſie einander nicht mehr ſchneiden, ſo fallen ſie in einander,
und machen eine gerade Linie, welches der Durchmeſſer (Diameter) des
Circuls ſelbſt iſt.
Der Sinus (Eckmaas) eines Winkels oder eines Bogens, iſt die Helfte von
88Fig. 15. der Chorda (Sehne) des doppelten Bogens, zum Exempel: man
88Fig. 15. der Chorda (Sehne) des doppelten Bogens, zum Exempel: man