Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(246)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div593
"
type
="
section
"
level
="
1
"
n
="
346
">
<
p
>
<
s
xml:id
="
echoid-s6093
"
xml:space
="
preserve
">
<
pb
o
="
246
"
file
="
0266
"
n
="
266
"
rhead
="
GEOMETRIÆ
"/>
V. </
s
>
<
s
xml:id
="
echoid-s6094
"
xml:space
="
preserve
">regula, FM, .</
s
>
<
s
xml:id
="
echoid-s6095
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s6096
"
xml:space
="
preserve
">ex ea, quam habet reſiduum rectangulum Theor.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s6097
"
xml:space
="
preserve
">antecedentis ad quadratum, FM, & </
s
>
<
s
xml:id
="
echoid-s6098
"
xml:space
="
preserve
">ex ratione omnium quadrato-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0266-01
"
xlink:href
="
note-0266-01a
"
xml:space
="
preserve
">Ex antec.</
note
>
rum, Δ V, regula, FM, ad omnia quadrata eiuſdem, Δ V, regula,
<
lb
/>
R V, .</
s
>
<
s
xml:id
="
echoid-s6099
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s6100
"
xml:space
="
preserve
">ex ea, quam habet, Δ R, ad, RV, vel, ſumpta, Δ R, com-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0266-02
"
xlink:href
="
note-0266-02a
"
xml:space
="
preserve
">29. l. 2.</
note
>
muni altitudine ex ea, quam habet quadratum, Δ R, vel quadra-
<
lb
/>
<
figure
xlink:label
="
fig-0266-01
"
xlink:href
="
fig-0266-01a
"
number
="
164
">
<
image
file
="
0266-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0266-01
"/>
</
figure
>
tum, FM, ad rectangulum ſub, FM,
<
lb
/>
R V; </
s
>
<
s
xml:id
="
echoid-s6101
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6102
"
xml:space
="
preserve
">tandem ex ea, quam habent
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0266-03
"
xlink:href
="
note-0266-03a
"
xml:space
="
preserve
">1. huius.</
note
>
omnia quadrata, Δ V, ad omnia qua-
<
lb
/>
drata portionis, RFV, .</
s
>
<
s
xml:id
="
echoid-s6103
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s6104
"
xml:space
="
preserve
">ex ea, quam
<
lb
/>
habet, MH, ad compoſitam ex, {1/2}, M
<
lb
/>
H, &</
s
>
<
s
xml:id
="
echoid-s6105
"
xml:space
="
preserve
">, {1/6}, FM. </
s
>
<
s
xml:id
="
echoid-s6106
"
xml:space
="
preserve
">Rationes autem re-
<
lb
/>
ctanguli reſidui Theor.</
s
>
<
s
xml:id
="
echoid-s6107
"
xml:space
="
preserve
">antecedentis ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0266-04
"
xlink:href
="
note-0266-04a
"
xml:space
="
preserve
">Defin. 12.
<
lb
/>
l. 1.</
note
>
quadratum, FM, & </
s
>
<
s
xml:id
="
echoid-s6108
"
xml:space
="
preserve
">quadrati, FM,
<
lb
/>
ad rectangulum ſub, FM, RV, re-
<
lb
/>
ſoluuntur in rationem rectanguli reſi-
<
lb
/>
dui Theor. </
s
>
<
s
xml:id
="
echoid-s6109
"
xml:space
="
preserve
">antecedentis ad rectangu-
<
lb
/>
lum ſub, FM, RV, quę iuncta rationi
<
lb
/>
ipſius, MH, ad compoſitam ex, {1/2}, M
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0266-05
"
xlink:href
="
note-0266-05a
"
xml:space
="
preserve
">G. Cor. 4.
<
lb
/>
gen. 34.
<
lb
/>
l. 2.</
note
>
H, &</
s
>
<
s
xml:id
="
echoid-s6110
"
xml:space
="
preserve
">, {1/6}, FM, cõponit rationem paral-
<
lb
/>
lelepipedi ſub baſi reſiduo rectangulo
<
lb
/>
Theor. </
s
>
<
s
xml:id
="
echoid-s6111
"
xml:space
="
preserve
">antecedentis, altitudine, MH,
<
lb
/>
ad parallelepipedum ſub baſi rectan-
<
lb
/>
gulo ſub, FM, RV, & </
s
>
<
s
xml:id
="
echoid-s6112
"
xml:space
="
preserve
">ſub compoſita
<
lb
/>
ex, {1/2}, MH, &</
s
>
<
s
xml:id
="
echoid-s6113
"
xml:space
="
preserve
">, {1/6}, FM: </
s
>
<
s
xml:id
="
echoid-s6114
"
xml:space
="
preserve
">Triplicentur
<
lb
/>
horum parallelepipedoru altitudines,
<
lb
/>
ſiet pro an ecedentis altitudine tripla,
<
lb
/>
M H, & </
s
>
<
s
xml:id
="
echoid-s6115
"
xml:space
="
preserve
">pro altitudine parallelepipedi conſequentis tripla dimidiæ,
<
lb
/>
M H,.</
s
>
<
s
xml:id
="
echoid-s6116
"
xml:space
="
preserve
">. ſexquialtera ipſius, MH, . </
s
>
<
s
xml:id
="
echoid-s6117
"
xml:space
="
preserve
">. </
s
>
<
s
xml:id
="
echoid-s6118
"
xml:space
="
preserve
">ſexquialtera, MI, & </
s
>
<
s
xml:id
="
echoid-s6119
"
xml:space
="
preserve
">ſexquial
<
lb
/>
tera, IH, cum, {1/2}, FM, porro ſi ſexquialterę, MI, iunxeris ſexqui-
<
lb
/>
alteram, IH, cum dimidia, FM, .</
s
>
<
s
xml:id
="
echoid-s6120
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s6121
"
xml:space
="
preserve
">duplam, IH, quoniam ſex-
<
lb
/>
quialtera, IH, eſt, MI, IN, ſi inquam illi iunxeris bis, IH, com-
<
lb
/>
ponetur altitudo conſequentis parailelepipedi, quę erit, MH, HN;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s6122
"
xml:space
="
preserve
">omnia ergo quadrata portionis, RFV, regula, FM, ad omnia qua-
<
lb
/>
drata eiuſdem, regula, RV, erunt vt parallelepipedum ſub bafi re-
<
lb
/>
ſiduo rectangulo Theor. </
s
>
<
s
xml:id
="
echoid-s6123
"
xml:space
="
preserve
">antecedentis, altitudine tripla, MH, ad
<
lb
/>
parallelepipedum ſub baſi rectangulo, ſub, FM, RV, altitudine li-
<
lb
/>
nea compoſita ex, MH, HN, tum in circuli, tum ellipſis figura,
<
lb
/>
quod oſtendere oportebat.</
s
>
<
s
xml:id
="
echoid-s6124
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>