Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 2
[out of range]
>
[Note]
Page: 28
[Note]
Page: 29
[Note]
Page: 29
[Note]
Page: 29
[Note]
Page: 29
[Note]
Page: 29
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 38
[Note]
Page: 39
[Note]
Page: 39
[Note]
Page: 45
[Note]
Page: 46
[Note]
Page: 46
[Note]
Page: 47
[Note]
Page: 48
[Note]
Page: 48
[Note]
Page: 59
[Note]
Page: 60
[Note]
Page: 69
[Note]
Page: 70
[Note]
Page: 71
<
1 - 2
[out of range]
>
page
|<
<
(325)
of 568
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div31
"
type
="
section
"
level
="
1
"
n
="
16
">
<
p
>
<
s
xml:id
="
echoid-s321
"
xml:space
="
preserve
">
<
pb
o
="
325
"
file
="
0027
"
n
="
28
"
rhead
="
HYPERB. ELLIPS. ET CIRC.
"/>
tione A B C punctum L. </
s
>
<
s
xml:id
="
echoid-s322
"
xml:space
="
preserve
">Dico igitur portionem ad inſcri-
<
lb
/>
ptum ſibi triangulum A B C eam habere rationem quam duæ
<
lb
/>
tertiæ E D ad F L. </
s
>
<
s
xml:id
="
echoid-s323
"
xml:space
="
preserve
">Conſtituatur enim ut ſupra triangulus
<
lb
/>
K F H, cujus nimirum baſis K H ſit baſi A C æqualis & </
s
>
<
s
xml:id
="
echoid-s324
"
xml:space
="
preserve
">
<
lb
/>
parallela, & </
s
>
<
s
xml:id
="
echoid-s325
"
xml:space
="
preserve
">F G quæ à vertice ad mediam baſin pertingit
<
lb
/>
poſſit rectangulum B D E: </
s
>
<
s
xml:id
="
echoid-s326
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s327
"
xml:space
="
preserve
">centrum gravitatis trianguli
<
lb
/>
K F H ſit M punctum, ſumptâ ſcilicet F M æquali duabus
<
lb
/>
<
note
symbol
="
1
"
position
="
right
"
xlink:label
="
note-0027-01
"
xlink:href
="
note-0027-01a
"
xml:space
="
preserve
">14. lib. 1.
<
lb
/>
Arch. de
<
lb
/>
Æquip.</
note
>
tertiis lineæ F G .</
s
>
<
s
xml:id
="
echoid-s328
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s329
"
xml:space
="
preserve
">Triangulus igitur K F H eſt ad triangulum A B C, ut
<
lb
/>
F G ad B D; </
s
>
<
s
xml:id
="
echoid-s330
"
xml:space
="
preserve
">ut autem F G ad B D, ſic eſt E D ad F G,
<
lb
/>
quia quadratum F G æquale eſt B D E rectangulo; </
s
>
<
s
xml:id
="
echoid-s331
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s332
"
xml:space
="
preserve
">ut
<
lb
/>
E D ad F G, ſic ſunt duæ tertiæ E D ad duas tertias F G,
<
lb
/>
id eſt, ad F M. </
s
>
<
s
xml:id
="
echoid-s333
"
xml:space
="
preserve
">Ergo triangulus K F H ad triangulum A B C,
<
lb
/>
ſicut duæ tertiæ E D ad F M. </
s
>
<
s
xml:id
="
echoid-s334
"
xml:space
="
preserve
">Portio autem A B C eſt ad
<
lb
/>
triangulum K F H, ut F M ad F L , quoniam
<
note
symbol
="
2
"
position
="
right
"
xlink:label
="
note-0027-02
"
xlink:href
="
note-0027-02a
"
xml:space
="
preserve
">7. lib. 1.
<
lb
/>
Archim. de
<
lb
/>
Æquipond.</
note
>
brium eorum eſt in F , & </
s
>
<
s
xml:id
="
echoid-s335
"
xml:space
="
preserve
">centra gravitatis ſingulorum
<
note
symbol
="
3
"
position
="
right
"
xlink:label
="
note-0027-03
"
xlink:href
="
note-0027-03a
"
xml:space
="
preserve
">Theor. 5. h.</
note
>
cta L & </
s
>
<
s
xml:id
="
echoid-s336
"
xml:space
="
preserve
">M; </
s
>
<
s
xml:id
="
echoid-s337
"
xml:space
="
preserve
">Ergo ex æquali in proportione perturbata,
<
lb
/>
erit portio A B C ad A B C triangulum, ſicut duæ tertiæ
<
lb
/>
E D ad F L .</
s
>
<
s
xml:id
="
echoid-s338
"
xml:space
="
preserve
"/>
</
p
>
<
note
symbol
="
4
"
position
="
right
"
xml:space
="
preserve
">23. lib. 5.
<
lb
/>
Elem.</
note
>
<
p
>
<
s
xml:id
="
echoid-s339
"
xml:space
="
preserve
">Sit nunc portio A B C dimidiâ figurâ major. </
s
>
<
s
xml:id
="
echoid-s340
"
xml:space
="
preserve
">Dico eam
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0027-05
"
xlink:href
="
note-0027-05a
"
xml:space
="
preserve
">TAB. XXXVI.
<
lb
/>
Fig. 1. 2.</
note
>
rurſus ad inſcriptum triangulum eam habere rationem, quam
<
lb
/>
duæ tertiæ E D ad F L.</
s
>
<
s
xml:id
="
echoid-s341
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s342
"
xml:space
="
preserve
">Ponatur enim portionis reliquæ A E C centrum gravitatis
<
lb
/>
H punctum, & </
s
>
<
s
xml:id
="
echoid-s343
"
xml:space
="
preserve
">jungantur A E, E C. </
s
>
<
s
xml:id
="
echoid-s344
"
xml:space
="
preserve
">Igitur per ea quæ jam
<
lb
/>
oſtendimus, erit portio A E C ad A E C triangulum, ut
<
lb
/>
duæ tertiæ B D ad F H; </
s
>
<
s
xml:id
="
echoid-s345
"
xml:space
="
preserve
">verùm ut triangulus A E C ad
<
lb
/>
triangulum A B C, ſic eſt E D ad B D, ſive duæ tertiæ
<
lb
/>
E D ad duas tertias B D; </
s
>
<
s
xml:id
="
echoid-s346
"
xml:space
="
preserve
">ex æquali igitur in proportione
<
lb
/>
perturbata, erit ſicut portio A E C ad triangulum A B C,
<
lb
/>
ita duæ tertiæ E D ad F H . </
s
>
<
s
xml:id
="
echoid-s347
"
xml:space
="
preserve
">Sed ut portio A B C
<
note
symbol
="
5
"
position
="
right
"
xlink:label
="
note-0027-06
"
xlink:href
="
note-0027-06a
"
xml:space
="
preserve
">23. lib. 5.
<
lb
/>
Elem.</
note
>
A E C portionem, ita eſt F H ad F L , quoniam
<
note
symbol
="
6
"
position
="
right
"
xlink:label
="
note-0027-07
"
xlink:href
="
note-0027-07a
"
xml:space
="
preserve
">8. lib. 1.
<
lb
/>
Arch. de
<
lb
/>
Æquipond.</
note
>
figuræ centrum gravitatis eſt F, centraque dictarum portio-
<
lb
/>
num L & </
s
>
<
s
xml:id
="
echoid-s348
"
xml:space
="
preserve
">H; </
s
>
<
s
xml:id
="
echoid-s349
"
xml:space
="
preserve
">Ergo iterum ex æquali in proportione per-
<
lb
/>
turbata, erit portio A B C ad A B C triangulum, ut duæ
<
lb
/>
tertiæ E D ad F L. </
s
>
<
s
xml:id
="
echoid-s350
"
xml:space
="
preserve
">Omnis igitur Ellipſis vel circuli portio
<
lb
/>
&</
s
>
<
s
xml:id
="
echoid-s351
"
xml:space
="
preserve
">c. </
s
>
<
s
xml:id
="
echoid-s352
"
xml:space
="
preserve
">Quod erat demonſtrandum.</
s
>
<
s
xml:id
="
echoid-s353
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>