Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Page concordance

< >
Scan Original
281 243
282 244
283 245
284 246
285 247
286 248
287 249
288 250
289 251
290 252
291 253
292 254
293 255
294 256
295 257
296 258
297 259
298 260
299 261
300 262
301 263
302 264
303 265
304 266
305 267
306 268
307 269
308 270
309 271
310 272
< >
page |< < (244) of 458 > >|
282244Apollonij Pergæi 329[Figure 329]
Igitur duo plana tranſeuntia per K L, T V eleuata ſuper triangulum.
11d H F I ad angulos rectos producunt in cono H F I duas ſectiones hypor-
bolicas, quarum axes L M, V X, &
inclinati ipſarum L K, V T, &
ſingulì eorum ad ſuos erectos ſunt, vt D B ad B E;
ergo figuræ trium.
ſectionum ſunt ſimiles, & æquales; & propterea duæ ſectiones, qua-
rum axes ſunt L M, V X ſunt æquales ſectioni A B, &
c. Ex textu men-
doſo expungi debent ſuperuacanea aliqua verba, ſicut in contextu habetur.

Non enim verum eſt, quod duæ tantummodo hyperbole æquales eidem A B duci
poſſunt in cono recto H F I, vertices habentes in lateribus H F, &
F I, ſed
quatuor inter ſe æquales eße poßunt;
nam ſuper latus F H duci poſſunt duæ
hyperbole, quarum axes tranſuerſi K L æquales ſint ipſi B D, &
æquidiſtan-
tes ſint rectis lineis F N, &
F S. Quod ſic oſtendetur. Quoniam recta linea
Q R ducta eſt parallela ipſi H I erunt duo arcus circuli intercepti H Q, I R
æquales inter ſe;
& ideo duo anguli ad peripheriam H F Q, & I F R æquales
erunt inter ſe;
poſita autem fuit K L æqualis, & parallela ipſi F N; igitur
duo anguli alterni K L F, &
H F N æquales ſunt inter ſe: pari ratione; quia
reliqua K L ducta eſt parallela ipſi F S, erit angulus externus S F I æqualis
interno, &
oppoſito, & ad eaſdem partes L K F; & ideo duo triangula L F K
habent angulum F, communem, &
duos angolos in ſingulis triangulis K, &
L æquales;
igitur ſunt æquiangula, & ſimilia, & , vt antea dictum eſt, fieri
poſſunt duæ rectæ lineæ K L æquales eidem D B, &
inter ſe: ſi igitur per duas
rectas lineas K L ducantur plana perpendicularia ad planum trianguli per axim
H F I, eſſicientur in cono recto duæ hyperbole, quarum bini axes tranſuerſi K L
ſunt æquales:
& quia, propter parallelas H I, Q R, eſt F N ad N Q ſeu qua-
dratum F N ad rectangulum F N Q vt F S æd S R ſeu vt quadratum F S ad
rectangum F S R;
ſed rectangulum H N I æquale eſt rectangulo F N Q, &
rectangulum H S I æquale eſt rectangulo F S R:
ergo quadratum F N ad re-
ctangulum H N I eandem proportionem habet, quàm quaàratum F S ad rectã-
gulum H S I;
eſtque latus tranſuerſum K L ad ſuum latus rectum, vt quadra-
2212. lib. 1. tum F N ad rectangulum H N I, pariterque latus tranſuerſum K L alterius
ſectionis ad ſuum latus rectum eſt vt quadratum F S ad rectangulum H S I:
33Ibidem.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index