Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 2
[out of range]
>
[Note]
Page: 28
[Note]
Page: 29
[Note]
Page: 29
[Note]
Page: 29
[Note]
Page: 29
[Note]
Page: 29
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 38
[Note]
Page: 39
[Note]
Page: 39
[Note]
Page: 45
[Note]
Page: 46
[Note]
Page: 46
[Note]
Page: 47
[Note]
Page: 48
[Note]
Page: 48
[Note]
Page: 59
[Note]
Page: 60
[Note]
Page: 69
[Note]
Page: 70
[Note]
Page: 71
<
1 - 2
[out of range]
>
page
|<
<
(327)
of 568
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div36
"
type
="
section
"
level
="
1
"
n
="
17
">
<
p
>
<
s
xml:id
="
echoid-s378
"
xml:space
="
preserve
">
<
pb
o
="
327
"
file
="
0031
"
n
="
33
"
rhead
="
HYPERB. ELLIPS. ET CIRC.
"/>
tertiis rectanguli K F B , id eſt, duabus tertiis
<
note
symbol
="
4
"
position
="
right
"
xlink:label
="
note-0031-01
"
xlink:href
="
note-0031-01a
"
xml:space
="
preserve
">16. lib. 6.
<
lb
/>
Elem.</
note
>
A F; </
s
>
<
s
xml:id
="
echoid-s379
"
xml:space
="
preserve
">ſed idem rectangulum ſub Q F, D H, æquale eſt re-
<
lb
/>
ctangulo Q D R, quia ut Q D ad Q F, ita fecimus eſſe
<
lb
/>
D H ad D R; </
s
>
<
s
xml:id
="
echoid-s380
"
xml:space
="
preserve
">ergo rectangulum Q D R æquale duabus ter-
<
lb
/>
tiis quadrati A F, ideoque ut Q D ad A F ita {2/3} A F ad D R
<
lb
/>
: </
s
>
<
s
xml:id
="
echoid-s381
"
xml:space
="
preserve
">ſed ut Q D ad A F, ſic quoque eſt rectangulum ſub Q
<
note
symbol
="
5
"
position
="
right
"
xlink:label
="
note-0031-02
"
xlink:href
="
note-0031-02a
"
xml:space
="
preserve
">16. lib. 6.
<
lb
/>
Elem.</
note
>
A F, cui æquale quadrilaterum D A Q C, id eſt, ſector
<
lb
/>
D A B C ad A F quadratum; </
s
>
<
s
xml:id
="
echoid-s382
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s383
"
xml:space
="
preserve
">ſector D A B C ad
<
lb
/>
quadratum A F, ut {2/3} A F ad D R. </
s
>
<
s
xml:id
="
echoid-s384
"
xml:space
="
preserve
">Porro quoniam E cen-
<
lb
/>
trum gravitatis eſt totius ſectoris, & </
s
>
<
s
xml:id
="
echoid-s385
"
xml:space
="
preserve
">H centrum grav. </
s
>
<
s
xml:id
="
echoid-s386
"
xml:space
="
preserve
">por-
<
lb
/>
tionis A C B, G vero trianguli A C D, conſtat eſſe, ſicut
<
lb
/>
triangulus A C D ad A C B portionem ſive ad triangulum
<
lb
/>
A Q C, id eſt, ut D F ad F Q, ita H E ad E G ; </
s
>
<
s
xml:id
="
echoid-s387
"
xml:space
="
preserve
">
<
note
symbol
="
6
"
position
="
right
"
xlink:label
="
note-0031-03
"
xlink:href
="
note-0031-03a
"
xml:space
="
preserve
">8. lib. 1.
<
lb
/>
Arch. de
<
lb
/>
Æquipond.</
note
>
convertendo & </
s
>
<
s
xml:id
="
echoid-s388
"
xml:space
="
preserve
">per compoſitionem rationis erit ut D Q ad
<
lb
/>
D F, ita G H, ad H E. </
s
>
<
s
xml:id
="
echoid-s389
"
xml:space
="
preserve
">Sed quia fecimus ut D Q ad Q F,
<
lb
/>
ita H D ad D R, erit quoque per converſionem rationis,
<
lb
/>
ut D Q ad D F, ita H D ad H R; </
s
>
<
s
xml:id
="
echoid-s390
"
xml:space
="
preserve
">ergo H D ad H R ut
<
lb
/>
G H ad H E; </
s
>
<
s
xml:id
="
echoid-s391
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s392
"
xml:space
="
preserve
">reliqua G D ad reliquam E R, ut
<
lb
/>
<
note
symbol
="
7
"
position
="
right
"
xlink:label
="
note-0031-04
"
xlink:href
="
note-0031-04a
"
xml:space
="
preserve
">19. lib. 5.
<
lb
/>
Elem.</
note
>
H D ad H R , hoc eſt, ut D Q ad D F. </
s
>
<
s
xml:id
="
echoid-s393
"
xml:space
="
preserve
">Sicut autem D Q ad D F, ita eſt quadrilaterum D A Q C, cui æqualis ſector
<
lb
/>
D A B C ad A C D triangulum; </
s
>
<
s
xml:id
="
echoid-s394
"
xml:space
="
preserve
">igitur ſector D A B C
<
lb
/>
ad A C D triangulum ut G D ad E R: </
s
>
<
s
xml:id
="
echoid-s395
"
xml:space
="
preserve
">Eſt autem A C D
<
lb
/>
triangulus ad D F quadratum, ut A F ad D F, ſive ut {2/3} A F
<
lb
/>
ad {2/3} D F id eſt D G. </
s
>
<
s
xml:id
="
echoid-s396
"
xml:space
="
preserve
">Igitur ex æquali in proportione perturbata,
<
lb
/>
ſicut ſector D A B C ad quadratum D F, ita {2/3} A F ad E R
<
lb
/>
, & </
s
>
<
s
xml:id
="
echoid-s397
"
xml:space
="
preserve
">convertendo, quadratum D F ad ſectorem D A B
<
note
symbol
="
8
"
position
="
right
"
xlink:label
="
note-0031-05
"
xlink:href
="
note-0031-05a
"
xml:space
="
preserve
">23. lib. 5.
<
lb
/>
Elem.</
note
>
ut E R ad {2/3} A F. </
s
>
<
s
xml:id
="
echoid-s398
"
xml:space
="
preserve
">Fuit autem ante oſtenſum, quadratum
<
lb
/>
A F eſſe ad ſectorem D A B C, ut D R ad {2/3} A F; </
s
>
<
s
xml:id
="
echoid-s399
"
xml:space
="
preserve
">igitur
<
lb
/>
duo ſimul quadrata, D F & </
s
>
<
s
xml:id
="
echoid-s400
"
xml:space
="
preserve
">A F, ſive unum quadratum
<
lb
/>
D A ad ſectorem D A B C ut duæ ſimul E R & </
s
>
<
s
xml:id
="
echoid-s401
"
xml:space
="
preserve
">R D, id
<
lb
/>
eſt ut tota E D ad {2/3} A F . </
s
>
<
s
xml:id
="
echoid-s402
"
xml:space
="
preserve
">Eſt verò etiam quadratum D
<
note
symbol
="
9
"
position
="
right
"
xlink:label
="
note-0031-06
"
xlink:href
="
note-0031-06a
"
xml:space
="
preserve
">24 lib. 5.
<
lb
/>
Elem.</
note
>
ad D A B C ſectorem, ſicut linea D A ad arcum A B, quia
<
lb
/>
nimirum ſector D A B C æqualis eſt rectangulo, baſin ha-
<
lb
/>
benti æqualem arcui A B & </
s
>
<
s
xml:id
="
echoid-s403
"
xml:space
="
preserve
">altitudinem D A; </
s
>
<
s
xml:id
="
echoid-s404
"
xml:space
="
preserve
">ergo ſicut
<
lb
/>
D A ad arcum A B, ita E D ad {2/3} A F; </
s
>
<
s
xml:id
="
echoid-s405
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s406
"
xml:space
="
preserve
">permutando,
<
lb
/>
arcus A B ad {2/3} A F, ſive arcus A B C ad {2/3} A C, ut D A
<
lb
/>
vel B D ad D E.</
s
>
<
s
xml:id
="
echoid-s407
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>