Musschenbroek, Petrus van, Physicae experimentales, et geometricae de magnete, tuborum capillarium vitreorumque speculorum attractione, magnitudine terrae, cohaerentia corporum firmorum dissertationes: ut et ephemerides meteorologicae ultraiectinae

Page concordance

< >
Scan Original
351 337
352 338
353 339
354 340
355 341
356 342
357 343
358 344
359 345
360 346
361 347
362 348
363 349
364 350
365 351
366 352
367 353
368
369
370
371 357
372 358
373 359
374 360
375 361
376 362
377 363
378 364
379 365
380 366
< >
page |< < (337) of 795 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div235" type="section" level="1" n="235">
          <p>
            <s xml:id="echoid-s8246" xml:space="preserve">
              <pb o="337" file="0351" n="351" rhead="DE SPECULIS VITREIS."/>
            pio, quadruplo majores quam MS: </s>
            <s xml:id="echoid-s8247" xml:space="preserve">ita tamen non increſcunt Se-
              <lb/>
            cantes: </s>
            <s xml:id="echoid-s8248" xml:space="preserve">ſit enim MS Tangens anguli gradus unius 174551, erit Se-
              <lb/>
            cans 10001523: </s>
            <s xml:id="echoid-s8249" xml:space="preserve">ſed Tangens duplo major VM 349102 nondum
              <lb/>
            habebit reſpondentem eidem angulo Secantem 10006095. </s>
            <s xml:id="echoid-s8250" xml:space="preserve">ita QM
              <lb/>
            Tangenti triplo majori 523653 nondum reſpondebit Secans
              <lb/>
            10013723: </s>
            <s xml:id="echoid-s8251" xml:space="preserve">hiſce igitur non creſcentibus cum illis in eadem pro-
              <lb/>
            portione, non poterit L f, e, d, c, x eſſerecta, ſed debebit eſſe curva. </s>
            <s xml:id="echoid-s8252" xml:space="preserve">Si
              <lb/>
            accurate poſſemus obiervare altitudinem ML, & </s>
            <s xml:id="echoid-s8253" xml:space="preserve">longitudinem MX,
              <lb/>
            poſſent in curva ambæ viresattrahentes determinari, quod nunc im-
              <lb/>
            poſſibile manet: </s>
            <s xml:id="echoid-s8254" xml:space="preserve">& </s>
            <s xml:id="echoid-s8255" xml:space="preserve">magis, cum diverſæſpeciei vitrum, etiam diverſam
              <lb/>
            attrahendivim habet; </s>
            <s xml:id="echoid-s8256" xml:space="preserve">unde forſitan curvæ inter ſe admodum differen-
              <lb/>
            tes formabuntur, quarum naturam inveſtigaſſe non magnæ erit
              <lb/>
            utilitatis.</s>
            <s xml:id="echoid-s8257" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s8258" xml:space="preserve">Redeamus nunc ad vitrum FCD, quod Aquæ immiſ-
              <lb/>
            fum fuit, quæ attrahitur â puncto D maxime & </s>
            <s xml:id="echoid-s8259" xml:space="preserve">agitur deter-
              <lb/>
            minatione B D, tum a punctis inter D & </s>
            <s xml:id="echoid-s8260" xml:space="preserve">C ſemper attrahitur mi-
              <lb/>
            nus: </s>
            <s xml:id="echoid-s8261" xml:space="preserve">concipiantur ductæ rectæ, Sc, Sd, Se perpendiculares in ſu-
              <lb/>
            perficiem, hæ repræſentabunt vires cujuslibet puncti attrahentis,
              <lb/>
            quarum ſumma erit æqualis quantitati attractæ, ſive gravitati A-
              <lb/>
            quæ C D G, deorſum nitentis, cum altitudo C D Aquæ manet
              <lb/>
            conſtans. </s>
            <s xml:id="echoid-s8262" xml:space="preserve">Si enim gravitas particularum Aquæ foret major, quam eſt
              <lb/>
            vis elevans, Aqua deſcenderet; </s>
            <s xml:id="echoid-s8263" xml:space="preserve">ſi vis elevans foret major, plus Aquæ
              <lb/>
            adſcenderet, donec ſibi gravitas & </s>
            <s xml:id="echoid-s8264" xml:space="preserve">vis elevans æquilibratæ eſſent.</s>
            <s xml:id="echoid-s8265" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s8266" xml:space="preserve">Quia inferior pars vitri DR eſt ſub Aqua ſubmerſa, hujus quod
              <lb/>
            libet punctum Aquam ad ſe trahit, vi æquali, idcirco curva non
              <lb/>
            formatur ſub Aqua: </s>
            <s xml:id="echoid-s8267" xml:space="preserve">ut tamen demonſtremus curvam cæteroquin a
              <lb/>
            fluido attracto ad D R ſormatum iri, ſuperficiei Aquæ AB affunda-
              <lb/>
            tur quædam olei quantitas, deinde vitro FR immerſo Aquæ ad
              <lb/>
            profunditatem I vel 1 {1/2} lineæ exhibebitur ſuperſicies curva
              <lb/>
            olei attracti, æque ſub Aqua, quam ſupra Aquam: </s>
            <s xml:id="echoid-s8268" xml:space="preserve">ſi autem pro-
              <lb/>
            fundius demittatur vitrum, tum preſſio Aquæ ſuperans olei attra-
              <lb/>
            ctionem, id omne a vitro expellic, donec ſuperficiem parallelam
              <lb/>
            horizonti acquiſiverit.</s>
            <s xml:id="echoid-s8269" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s8270" xml:space="preserve">Quia obſervaveram Tubos capillares longiſſimos, ad majorem
              <lb/>
            altitudinem elevare Aquam quam breviores, exploravi an quoque
              <lb/>
            vitrum FDK majus aut minus, differentiam elevatæ Aquæ </s>
          </p>
        </div>
      </text>
    </echo>