Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(336)
of 568
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div41
"
type
="
section
"
level
="
1
"
n
="
18
">
<
p
>
<
s
xml:id
="
echoid-s720
"
xml:space
="
preserve
">
<
pb
o
="
336
"
file
="
0042
"
n
="
45
"
rhead
="
ΕΞΕΤΑΣΙΣ CYCLOM.
"/>
oſtenderat facili negotio deducatur, ut jam ſtatim appa-
<
lb
/>
rebit.</
s
>
<
s
xml:id
="
echoid-s721
"
xml:space
="
preserve
"/>
</
p
>
<
note
position
="
left
"
xml:space
="
preserve
">TAB. XXXVII.
<
lb
/>
Fig. 3.</
note
>
<
p
>
<
s
xml:id
="
echoid-s722
"
xml:space
="
preserve
">Repetitâ enim quatenus hîc neceſſe erit figurâ ipſius, quæ
<
lb
/>
eſt in propoſitione 99. </
s
>
<
s
xml:id
="
echoid-s723
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s724
"
xml:space
="
preserve
">9. </
s
>
<
s
xml:id
="
echoid-s725
"
xml:space
="
preserve
">Eſto Cylindrus Parabolicus,
<
lb
/>
baſes oppoſitas habens parabolas A B D, V C E; </
s
>
<
s
xml:id
="
echoid-s726
"
xml:space
="
preserve
">à quo ſit
<
lb
/>
abſciſſa Ungula A B C D, eâdem baſi & </
s
>
<
s
xml:id
="
echoid-s727
"
xml:space
="
preserve
">altitudine. </
s
>
<
s
xml:id
="
echoid-s728
"
xml:space
="
preserve
">Dico
<
lb
/>
Cylindrum ad hanc Ungulam habere rationem duplam ſeſ-
<
lb
/>
quialteram, ſive quam 5 ad 2.</
s
>
<
s
xml:id
="
echoid-s729
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s730
"
xml:space
="
preserve
">Tranſcriptis enim reliquis ex figura eadem, eſt F B dia-
<
lb
/>
meter parabolæ A B D: </
s
>
<
s
xml:id
="
echoid-s731
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s732
"
xml:space
="
preserve
">lineæ rectæ A B, B D. </
s
>
<
s
xml:id
="
echoid-s733
"
xml:space
="
preserve
">Ductâ
<
lb
/>
porrò B C rectâ in ſuperficie cylindri, ſumptâque ejus quar-
<
lb
/>
tâ parte C Q, abſcinditur plano P Q N ungula P Q C N
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s734
"
xml:space
="
preserve
">junguntur C A, C D. </
s
>
<
s
xml:id
="
echoid-s735
"
xml:space
="
preserve
">Denique toti cylindro adjuncta eſt
<
lb
/>
pyramis A D γ C æqualis parti B X D E C, quæ à cylin-
<
lb
/>
dro abſciſſa eſt plano B D E C. </
s
>
<
s
xml:id
="
echoid-s736
"
xml:space
="
preserve
">Et hactenus quidem ſuffi-
<
lb
/>
ciet nobis conſtructionem Cl. </
s
>
<
s
xml:id
="
echoid-s737
"
xml:space
="
preserve
">V. </
s
>
<
s
xml:id
="
echoid-s738
"
xml:space
="
preserve
">repetiiſſe. </
s
>
<
s
xml:id
="
echoid-s739
"
xml:space
="
preserve
">Demonſtravit
<
lb
/>
autem hæc duo quæ ſequuntur, ſicut videre eſt in dicta prop.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s740
"
xml:space
="
preserve
">99. </
s
>
<
s
xml:id
="
echoid-s741
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s742
"
xml:space
="
preserve
">9. </
s
>
<
s
xml:id
="
echoid-s743
"
xml:space
="
preserve
">Nimirum quod ungula A B C D eſt ad ungulam
<
lb
/>
P Q C N, ſicut 32 ad 1. </
s
>
<
s
xml:id
="
echoid-s744
"
xml:space
="
preserve
">Item quod hæc ungula P Q C N
<
lb
/>
eſt ad pyramidem totam A γ D B C, (quæ compoſita eſt
<
lb
/>
ex duabus pyramidibus A D B C & </
s
>
<
s
xml:id
="
echoid-s745
"
xml:space
="
preserve
">A D γ C) ut 1 ad
<
lb
/>
30.</
s
>
<
s
xml:id
="
echoid-s746
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s747
"
xml:space
="
preserve
">Erit igitur ex æquo ungula A B C D ad pyramidem
<
lb
/>
A γ D B C ut 32 ad 30, hoc eſt, ut 16 ad 15. </
s
>
<
s
xml:id
="
echoid-s748
"
xml:space
="
preserve
">Porrò cùm
<
lb
/>
parabolæ A B D octava pars ſit ſegmentum B D X, erit
<
lb
/>
quoque ſegmentum ſolidum B X D E C vel huic æqualis
<
lb
/>
pyramis A D γ C, octava pars cylindri totius parabolici
<
lb
/>
A V C E D B: </
s
>
<
s
xml:id
="
echoid-s749
"
xml:space
="
preserve
">ſed pyramis altera A D B C æquatur dua-
<
lb
/>
bus octavis ſive uni quartæ ejuſdem parabolici cylindri; </
s
>
<
s
xml:id
="
echoid-s750
"
xml:space
="
preserve
">(eſt
<
lb
/>
enim ipſa tertia pars ſui priſmatis, quod æquale eſt tribus
<
lb
/>
quartis cylindri iſtius, ut ex quadratura parabolæ conſtat)
<
lb
/>
ergo tota pyramis A γ D B C tribus octavis æquatur cylin-
<
lb
/>
dri parab. </
s
>
<
s
xml:id
="
echoid-s751
"
xml:space
="
preserve
">A V C E D B. </
s
>
<
s
xml:id
="
echoid-s752
"
xml:space
="
preserve
">Cylindrus igitur parabolicus
<
lb
/>
A V C E D B erit ad pyramidem A γ D B C, ut 8 ad 3,
<
lb
/>
hoc eſt, ut 40 ad 15; </
s
>
<
s
xml:id
="
echoid-s753
"
xml:space
="
preserve
">ſed oſtenſum eſt eandem pyramidem
<
lb
/>
A γ D B C eſſe ad ungulam A B C D ut 15 ad 16. </
s
>
<
s
xml:id
="
echoid-s754
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>