Ibn-al-Haitam, al-Hasan Ibn-al-Hasan; Witelo; Risner, Friedrich, Opticae thesavrvs Alhazeni Arabis libri septem, nunc primùm editi. Eivsdem liber De Crepvscvlis & Nubium ascensionibus. Item Vitellonis Thuvringopoloni Libri X. Omnes instaurati, figuris illustrati & aucti, adiectis etiam in Alhazenum commentarijs, a Federico Risnero, 1572

Page concordance

< >
Scan Original
41 35
42 36
43 37
44 38
45 39
46 40
47 41
48 42
49 43
50 44
51 45
52 46
53 47
54 48
55 49
56 50
57 51
58 52
59 53
60 54
61 55
62 56
63 57
64 58
65 59
66 60
67 61
68 62
69 63
70 64
< >
page |< < (40) of 778 > >|
4640ALHAZEN betre uiſa, & certificatur in qualibet re uiſa: quantitas autem remotionis non certificatur uiſui i
qualibet
re uiſa:
quoniam inter quædam uiſibilia & uiſum ſunt corpora ordinata continuata: inter
quædam
uerò & uiſum non ſunt corpora ordinata continuata, neque remotio eorum reſpicit cor-
pora
ordinata continuata.
Illa ergo, quorum remotio reſpicit corpora ordinata continuata, quãdo
uiſus
comprehen derit corpora ordinata, quæ reſpiciunt remotionem eorum uiſibiliũ, quãdo com
prehendet
ſcilicet quantitates illorum corporum, & cum comprehenderit menſuras illorum cor-
porum
, comprehendet quãtitates ſpatiorum, quæ ſunt inter extremitates illorum.
Et ſpatiũ, quod
eſt
inter duas extremitates corporis uiſi, quod reſpicit remotionem, quæ eſt inter uiſum & rem ui-
ſam
, quarum altera eſt in parte rei uiſę, & altera in parte aſpicientis:
eſt remotio rei uiſæ à uiſu, quo-
niam
reſpicit ſpatium, quod eſt inter uiſum & rem uiſam.
Cum ergo uiſus comprehendet menſu-
iſtius ſpatij:
comprehendet menſurã remotionis rei uiſæ. Viſus ergo comprehendit quantitatẽ
remotionis
rerũ uiſibiliũ (quarũ remotio reſpicit corpora ordinata cõtinuata) ex cõprehenſione
mẽſurarum
corporũ ordinatorũ reſpicientium remotiones earũ.
Et remotio quarundã rerũ iſtarũ
uiſibilium
eſt mediocris:
& remotio quarundã eſt extra medio critatem. Remotio ergo uiſibilium,
quorũ
remotio eſt mediocris:
comprehenditur à uiſu comprehenſione uera certificata: quoniam
uiſibilia
, quorũ remotio eſt mediocris, & inter quæ, & uiſum ſunt corpora ordinata cõtinuata, cõ-
prehenduntur
à uiſu uera comprehenſione:
Et cum uiſus cõprehendit iſta uiſibilia uera cõprehen
ſione
:
cõprehendit corpora ordinata interiacẽtia inter ipſum & ipſa uiſibilia uera cõprehenſione:
& cõprehendit iſta corpora uera cõprehenſione:
cõprehendit ſpatia interiacentia inter extremi
tates
eorum uera comprehenſione:
& cum comprehendit ſpatia uera comprehenſione: cõprehen-
det
menſuras remotionum uiſibilium, reſpicientium iſta ſpatia uera comprehenſione & certifica-
ta
.
Viſibilium ergo, quorum remotio reſpicit corpora ordinata continuata, & quorum remotio à
uiſu
eſt mediocris, menſuras remotionum comprehendit uiſus uera comprehenſione & certa:
&
eſt
dicere, certa, in ultimitate, in qua poterit ſenſus comprehendere.
Menſuræ uerò remotionum ui
ſibilium
, quorum remotio eſt extra mediocritatem, & quorum remotio reſpicit corpora ordinata
continuata
, ſi comprehenduntur à uiſu:
non comprehenduntur uera comprehenſione & certifica-
ta
:
quoniam uiſibilia, quorum remotio eſt extra mediocritatem, non comprehenduntur à uiſu ue-
ra
comprehenſione.
Et cum inter uiſum & iſta uiſibilia fuerint corpora ordinata continuata: non
comprehenduntur
à uiſu omnia iſta uiſibilia uera comprehenſione propter extraneitatem remo-
tionum
extremitatum ſuarum, & exitus eorum à mediocritate, per quam uiſus certificat uiſibilia.

Et
cum uiſus non comprehendat iſta corpora uera comprehenſione:
non comprehendet ſpatia in-
teriacentia
inter extremitates uera comprehenſione.
Non comprehendet ergo remotiones, quæ
ſuntinteriacentes
inter ipſum & uiſibilia, quæ ſunt apud extremitates iſtorum corporũ, uera com-
prehenſione
.
Quãtitates ergo remotionum uiſibilium, quorum remotio eſt extra mediocritatem,
& inter quam & uiſum ſunt corpora ordinata continuata, non comprehenduntur à uiſu uera com
prehenſione
.
Similiter remotiones uiſibilium, quorum remotio reſpicit corpora ordinata con-
tinuata
, non comprehenduntur à uiſu uera comprehenſione.
Quare uiſus, quando comprehende-
rit
nubes in plano & in locis carentibus montibus:
exiſtimabit, quòd ſint magnæ remotionis in re-
ſpectu
corporum cœleſtium, & cum nubes fuerint inter montes, & fuerint continuatæ:
fortè coo-
perientur
cacumina montium à nubibus:
& cum nubes diſtiterint, una ab altera: fortè apparebunt
cacumina
montium ſuperiora nubibus:
& fortè comprehendet uiſus partes nubium applicatas
cum
uertice montium, & fortè erit hoc in montibus non ualde altis.
Ex iſta ergo experimentatio-
ne
apparet, quod remotio nubium non eſt extranea:
& quòd plures illarum ſunt propinquiores
terrę
cacuminibus montium:
& quòd illud, quod exiſtimatur de extraneitate remotionis illarum,
error
eſt.
Et declarabitur inde, quòd uiſus non comprehendit menſuram remotionis nubium in
plano
:
& quòd menſura remotionis nubium comprehendetur à uiſu, quando fuerint inter mon-
tes
, & apparuerint cacumina montium ſuperiora.
Et hoc inuenitur etiam in pluribus uiſibilibus,
quæ
ſunt ſuper faciem terræ, ſcilicet, quòd menſuræ remotionum non reſpicientes corpora or-
dinata
continuata, non comprehenduntur à uiſu.
Ex illis ergo, ex quibus manifeſtatur hoc, ſci-
licet
quòd uiſus non comprehendat quantitatem remotionis rei uiſæ, niſi quando remotio eius
reſpexerit
corpora ordinata continuata, & comprehenderit uiſus illa corpora interpoſita, & cer-
tificauerit
menſuras eorum:
eſt experimentatio ſequens. Sit domus, in quam experimentator
non
intrauerit ante horam experimentationis:
& ſit in quodam pariete illius domus ſtrictum fo-
ramen
:
& ſit poſt illud foramen uacuitas, quam ante illam horam non uidit: & ſint in illa uacui-
tate
duo parietes, quorum unus ſit propinquior foramini quàm alius:
& ſit inter illos duos pari-
etes
diſtantia alicuius quantitatis:
& ſit paries propinquior cooperiens quandam partem parie-
tis
remotioris:
& ſit quædam pars parietis remotioris apparens: & ſit foramen eleuatum à ter-
ra
, ita ut quando aſpiciens aſpexerit per ipſum, non uideat faciem terræ, quæ eſt poſt parietem,
in
quo foramen eſt.
Experimentator igitur quando acceſſerit ad iſtum locum: & inſpexerit per
iſtud
foramen:
uidebit duos parietes ſimul, & non comprehendet remotionem, quæ eſt inter
ipſos
.
Siuerò remotio primi parietis fuerit magna, remotio extranea à foramine, comprehendet
duos
parietes quaſi ſe contingentes, & fortè exiſtimabit quòd ſit unus continuus, quando color
eorum
fuerit unus.
Et ſi paries primus fuerit remotus à foramine mediocriter, & percipiatur,
quòd
ſint duo parietes:
exiſtimabitur, quòd ſint propinqui ſibi, aut ſe contingentes, & non cer-

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index