Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of contents

< >
[51.] NOTÆ.
[52.] SECTIO QVINTA Continens XI. Propoſit. Apollonij.
[53.] NOTÆ.
[54.] SECTIO SEXTA Continens Propoſit. XIII. XIV. XV. Apollonij.
[55.] NOTÆ.
[56.] SECTIO SEPTIMA Continens XXVI. XXVII. XXVIII. Propoſ. Apollonij. PROPOSITIO XXVI. & XXVII.
[57.] PROPOSITIO XXVIII.
[58.] NOTÆ.
[59.] LEMMA V.
[60.] LEMMA. VI.
[61.] LEMMA VII.
[62.] SECTIO OCTAVA Continens Prop. IL. L. LI. LII. LIII. Apoll.
[63.] PROPOSITIO IL. & L.
[64.] PROPOSITIO LI.
[65.] PROPOSITIO LII. LIII.
[66.] PROPOSITIO LIV. LV.
[67.] PROPOSITIO LVI.
[68.] PROPOSITIO LVII.
[69.] Notæ in Propoſit. IL. L.
[70.] Notæ in Propoſit. LI.
[71.] Demonſtratio ſecundæ partis. PROPOSITIONIS LI.
[72.] Notæ in Propoſ. LII. LIII.
[73.] Secunda pars buius propoſitionis, quam Apollonius non expoſuit hac ratione ſuppleri poteſt.
[74.] Notæ in Propoſ. LIV. LV.
[75.] Notæ in Propoſit. LVI.
[76.] LEMMA VIII.
[77.] Notæ in Propoſ. LVII.
[78.] SECTIO NONA Continens Propoſ. LVIII. LIX. LX. LXI. LXII. & LXIII.
[79.] PROPOSITIO LVIII.
[80.] PROPOSITIO LIX. LXII. & LXIII.
< >
page |< < (13) of 458 > >|
5113Conicor. Lib. V.
LEMMA I.
Si quatuor quantitates eandem proportionem habuerint, antecedentes,
vel cońſequentes ad terminorum ſummas, vel differentias in eadem ra-
tione erunt;
& è contra.
HAbeat A B ad B C eandem proportionem, quàm D E ad E H: ſequitur pri-
mò, quod A C ad C B ſit, vt D H ad H E;
& huiuſmodi argumentatio
vocatur in elementis compoſitio terminorum proportionis:
itaque ſummæ antece-
dentium, &
conſequentium ad eaſdem conſequentes ſunt etiam proportionales:
ſi vero ex eadem hypotbeſi concludaiur, quod A C ad A B, ſit vt D H ad D E,
vt nimirum ſummæ terminorum proportionis ad antecedentes ſint proportiona-
les:
quod quidem manifeſtum eſt, nam poſita fuit A B ad B C, vt D E ad E H;
erit inuertendo C B ad B A, vt H E ad E D, &
componendo C A ad A B erit
vt H D ad D E:
modo huiuſmodi argumentandi forma innominata eſt; poteſt
autem breuitatis gratia appellari, Per comparationem ſummæ terminorum ad
antecedentes.
Secundò concludi poteſt, quod A B ad A
C ſit vt D E ad D H;
quia, vt in prima
20[Figure 20] parte dictum eſt, A C ad A B erat vt D H
ad D E, ergo inuertendo A B ad A C erit
vt D E ad D H:
hæc argumentandi forma
vocari poteſt, Per comparationem antece-
dentium ad terminorum ſummas.
Tertiò concludi poteſt: quod B C ad C A, ſit vt E H ad H D; nam componen-
do A C ad C B, erat vt D H ad H E, quare inuertendo B C ad C A erit vt E
H ad H D, &
hæc argumentatio fieri dicetur comparando conſequentes ad ter-
minorum ſummas.
Deindè ſint eædem quatuor proportiona-
les in ſecunda figura, nimirum totum A B
21[Figure 21] ad ſegmentum eius B C ſit vt totum D E
ad portionem eius E H;
tunc reſiduum A C
ad C B erit, vt reſiduum D H ad H E;
hæc
argumentatio ſieri dicitur in elementis, di-
uidendo terminos proportionis, eſtque comparatio differentiarum terminorum ad
conſequentes.
At ſi concludatur ex eadem hypotbeſi quod A B ad A C ſit vt D E ad D H;
hæc argumentatio in elementis fieri dicitur per conuerſionem rationis eſtque
comparatio antecedentium ad differentias terminorum.
Poſtea ex eadem hypotbeſi ſequitur quod A C ad A B ſit vt D H ad D E: quia
per conuerſionem rationis, ſeu referendo antecedentes ad differentias terminorum
eſt A B ad A C, vt D E ad D H;
ergo inuertendo A C ad A B erit vt D H ad
D E, &
hæc argumentatio innominata fiet comparando differentias terminorum
ad antecedentes.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index