Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of Notes

< >
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
< >
page |< < (24) of 458 > >|
6224Apollonij Pergæi aggregato differentiali ab-
35[Figure 35] ſciſſarum ramorum I L, I
M ab abſciſſa rami breuiſ-
ſimi.
Pari modo in hyperbola,
&
ellipſi quadratum I L ſu-
perat quadratum I M eodẽ
exceſſu, quo exemplar ap-
11Ex 9. 10. h. plicatum ad H P ſuperat
exemplar applicatum ad H
L;
ſed differentia exem-
plarium applicatorum ad H
P, &
H Q æqualis eſt re-
ctangulo ſub P Q exceſſu
differentiali, &
recta linea
compoſita ex X m, &
u l, ad quam ſumma
differentialis P H Q eandem proportionem
36[Figure 36] habet, quam latus trãſuerſum ad ſummam
in hyperbola, &
ad differentiam in ellipſi
laterum tranſuerſi, &
recti, vt in nota
propoſitionis 5.
oſtenſum eſt; igitur quadra-
tum I L ſuperat quadratum I M iam dicto
rectangulo ſub P Q, &
ſub X m, & u l,
quod erat oſtendendum.
SECTIO IV.
Continens Propoſit. VII.
& XII. Apollonij.
SIfuerit menſura A
37[Figure 37] D minor com-
22a parata A E, (12.)
aut
ſit pars lineæ breuiſſi-
mæ, &
axis in ellipſi
ſit maior, erit A D
breuiſſimus ramorum
egredientium ex ori-
gine eius in omnibus
ſectionibus, vt ſunt F
D, G D, B D, C D,
&
proximior illi minor eſt remotiore, nempe F D quam G D, & G
D, quàm B D.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index