Ibn-al-Haitam, al-Hasan Ibn-al-Hasan; Witelo; Risner, Friedrich, Opticae thesavrvs Alhazeni Arabis libri septem, nunc primùm editi. Eivsdem liber De Crepvscvlis & Nubium ascensionibus. Item Vitellonis Thuvringopoloni Libri X. Omnes instaurati, figuris illustrati & aucti, adiectis etiam in Alhazenum commentarijs, a Federico Risnero, 1572

Table of figures

< >
[11] b e g a h d k f z
[12] d a a b c
[13] a e g b f z q x c u d
[14] e r g b z f k m a n l c u d
[15] n m a b k c e d f g p h q ſ r o
[16] a r t
[17] d z c s f r t q k l h b n m a
[18] d z c s f r t q k l h b n m a
[19] n m l b h i k e p t r o s u q a f d g c
[Figure 20]
[21] p k c z q x y b
[Figure 22]
[Figure 23]
[24] e d f a c b
[25] a s b c
[26] a k f s d m b g c h
[27] a e g c b d h f
[28] a b f g c d n
[29] b a f l g e k h n d c
[30] a b e c f h g r i d m
[31] a b h c
[32] a d b k ſ c
[33] b ſ a u f d c h n g r k s x q p
[34] f d d e r b g c h i p ſ q s n k
[35] f a r d e b g c h p ſ s n k
[36] ſ g d f h b a
[37] a d f t e b
[38] d b c e f g b d
[39] a f b c d e
[40] a f b c d e g
< >
page |< < (76) of 778 > >|
    <echo version="1.0RC">
      <text xml:lang="lat" type="free">
        <div xml:id="echoid-div134" type="section" level="0" n="0">
          <pb o="76" file="0082" n="82" rhead="ALHAZEN"/>
        </div>
        <div xml:id="echoid-div135" type="section" level="0" n="0">
          <head xml:id="echoid-head162" xml:space="preserve">DE IIS QVAE DEBENT PRAEPONI SERMONI</head>
          <head xml:id="echoid-head163" xml:space="preserve">in deceptionibus uiſus. Cap. II.</head>
          <head xml:id="echoid-head164" xml:space="preserve" style="it">2. Axes pyramidum opticarum utriuſ uiſ{us} per centrum foraminis uueæ tranſeuntes,
            <lb/>
          in uno uiſibilis puncto ſemper concurrunt: & ſunt perpendiculares ſuperficiei uiſ{us}. 32. 35 p 3.</head>
          <p>
            <s xml:id="echoid-s3987" xml:space="preserve">DEclaratum eſt in primo tractatu [18 n] quòd uiſus nihil comprehendat ex uiſibilibus, niſi
              <lb/>
            ſecundum uerticationes refractas linearum radialium:</s>
            <s xml:id="echoid-s3988" xml:space="preserve"> & quòd ordo uiſibilium & partium
              <lb/>
            eorum non comprehenditur, niſi ex ordinatione linearum radialium.</s>
            <s xml:id="echoid-s3989" xml:space="preserve"> Et dictum eſt etiam
              <lb/>
            [27 n 1] quòd unum uiſum, quod comprehenditur duobus oculis ſimul, non comprehenditur
              <lb/>
            unum, niſi quando poſitio eius in reſpectu duorum oculorum fuerit poſitio conſimilis:</s>
            <s xml:id="echoid-s3990" xml:space="preserve"> & quòd ſi
              <lb/>
            poſitio fuerit diuerſa:</s>
            <s xml:id="echoid-s3991" xml:space="preserve"> tunc comprehendetur unum duo.</s>
            <s xml:id="echoid-s3992" xml:space="preserve"> Sed unumquodq;</s>
            <s xml:id="echoid-s3993" xml:space="preserve"> uiſibilium aſſuetorum,
              <lb/>
            quæ ſemper comprehenduntur à duobus uiſibus, ſemper comprehendetur unum.</s>
            <s xml:id="echoid-s3994" xml:space="preserve"> Vnde oportet
              <lb/>
            nos declarare, quomodo unum uiſum comprehendatur à duobus uiſibus unum in maiore parte
              <lb/>
            temporis & in pluribus poſitionibus:</s>
            <s xml:id="echoid-s3995" xml:space="preserve"> & quomodo poſitio unius uiſi ab ambobus oculis in maiore
              <lb/>
            parte temporis, & in pluribus erit conſimilis.</s>
            <s xml:id="echoid-s3996" xml:space="preserve"> Et declarabimus etiã
              <lb/>
              <figure xlink:label="fig-0082-01" xlink:href="fig-0082-01a" number="13">
                <variables xml:id="echoid-variables6" xml:space="preserve">a e g b f z q x c u d</variables>
              </figure>
            quomodo poſitio unius uiſi ab ambobus uiſibus erit poſitio diuer-
              <lb/>
            ſa, & quomodo accidat hoc.</s>
            <s xml:id="echoid-s3997" xml:space="preserve"> Et iam diximus hoc in primo tractatu
              <lb/>
            [27 n] & declarauimus ipſum uniuerſaliter, non determinatè.</s>
            <s xml:id="echoid-s3998" xml:space="preserve"> Dica
              <lb/>
            mus ergo quòd cum inſpiciẽs inſpexerit aliquod uiſum, tunc uterq;</s>
            <s xml:id="echoid-s3999" xml:space="preserve">
              <lb/>
            uiſus erit in oppoſitione illius uiſi:</s>
            <s xml:id="echoid-s4000" xml:space="preserve"> & cum inſpiciens direxerit pu-
              <lb/>
            pillam ad illud uiſum:</s>
            <s xml:id="echoid-s4001" xml:space="preserve"> tunc uterq;</s>
            <s xml:id="echoid-s4002" xml:space="preserve"> uiſus diriget pupillam ad illud ui-
              <lb/>
            ſum directione æquali.</s>
            <s xml:id="echoid-s4003" xml:space="preserve"> Et cum uiſus fuerit motus ſuper rem uiſam:</s>
            <s xml:id="echoid-s4004" xml:space="preserve">
              <lb/>
            tunc uterq;</s>
            <s xml:id="echoid-s4005" xml:space="preserve"> uiſus mouebitur ſuper illud.</s>
            <s xml:id="echoid-s4006" xml:space="preserve"> Et cum uiſus direxerit pu-
              <lb/>
            pillam ad rem uiſam:</s>
            <s xml:id="echoid-s4007" xml:space="preserve"> tunc axes duorum uiſuum congregabuntur in
              <lb/>
            illa re uiſa, & coniungentur in aliquo puncto illius ſuperficiei.</s>
            <s xml:id="echoid-s4008" xml:space="preserve"> Et ſi
              <lb/>
            inſpiciens mouerit uiſum per illam rem uiſam:</s>
            <s xml:id="echoid-s4009" xml:space="preserve"> tũc illi duo axes mo-
              <lb/>
            uebuntur ſimul ſuper ſuperficiẽ illius uiſi, & per omnes partes eius.</s>
            <s xml:id="echoid-s4010" xml:space="preserve">
              <lb/>
            Et uniuerſaliter duo oculi ſunt æquales in omnibus ſuis diſpoſitio-
              <lb/>
            nibus:</s>
            <s xml:id="echoid-s4011" xml:space="preserve"> & uirtus ſenſibilis, quæ eſt in eis, eſt eadem, & actio & paſsio
              <lb/>
            eorum ſemper eſt æqualis & omnino cõſimilis.</s>
            <s xml:id="echoid-s4012" xml:space="preserve"> Et ſi alter uiſus fue-
              <lb/>
            rit motus ad uidendum, ſtatim reliquus mouebitur ad illud uiſum
              <lb/>
            illo eodem motu:</s>
            <s xml:id="echoid-s4013" xml:space="preserve"> & ſi alter uiſus quieuerit, reliquus quieſcit.</s>
            <s xml:id="echoid-s4014" xml:space="preserve"> Et im-
              <lb/>
            poſsibile eſt, ut alter uiſus moueatur ad uidẽdum, & reliquus quie-
              <lb/>
            ſcat, niſi impediatur.</s>
            <s xml:id="echoid-s4015" xml:space="preserve"> Et declaratũ eſt in præteritis [19 n 1] quòd in-
              <lb/>
            ter quodlibet uiſum & cẽtrum uiſus eſt pyramis imaginabilis apud
              <lb/>
            uiſionem, cuius uertex eſt centrum uiſus, & baſis ſuperficies uiſi,
              <lb/>
            quod uiſus comprehendit:</s>
            <s xml:id="echoid-s4016" xml:space="preserve"> & iſta pyramis continet omnes uertica-
              <lb/>
            tiones, ex quibus comprehendit illã rem uiſam.</s>
            <s xml:id="echoid-s4017" xml:space="preserve"> Cum ergo duo axes
              <lb/>
            amborum uiſuum fuerint cõiuncti in aliquo puncto ſuperficiei uiſi:</s>
            <s xml:id="echoid-s4018" xml:space="preserve">
              <lb/>
            tunc ſuperficies uiſi erit baſis communis ambabus pyramidibus ra-
              <lb/>
            dialibus, figuratis inter duo cẽtra amborum uiſuum & illud uiſum:</s>
            <s xml:id="echoid-s4019" xml:space="preserve">
              <lb/>
            & tunc poſitio puncti, in quo axes ſunt cõiuncti apud ambos uiſus,
              <lb/>
            eſt poſitio cõſimilis:</s>
            <s xml:id="echoid-s4020" xml:space="preserve"> quia eſt oppoſitũ duobus medijs amborum ui-
              <lb/>
            ſuum, & duo axes, qui ſunt inter illud & duos uiſus, ſunt perpendi-
              <lb/>
            culares ſuper ſuperficiem duorum uiſuum.</s>
            <s xml:id="echoid-s4021" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div137" type="section" level="0" n="0">
          <head xml:id="echoid-head165" xml:space="preserve" style="it">3. Sit{us} uiſibilis erga utrun uiſum eſt plerun ſit{us} ſimilis. Ita axes pyramidum optica-
            <lb/>
          rum & lineæ ab utro uiſu ductæ ad cõcurſum duorum axιum, factũ in recta linea adutrun
            <lb/>
          axem perpendiculari, ſunt æquales. 40. 42 p 3.</head>
          <p>
            <s xml:id="echoid-s4022" xml:space="preserve">QVod autẽ remanet de ſuperficie uiſi, inter quodlibet punctũ eius, & inter duo cẽtra ambo-
              <lb/>
            rum uiſuũ, ſunt duæ lineæ, quarũ poſitio in reſpectu duorũ axiũ, erit poſitio cõſimilis in par
              <lb/>
            te ſcilicet:</s>
            <s xml:id="echoid-s4023" xml:space="preserve"> quoniã omnes duæ lineæ imaginabiles inter duo cẽtra duorũ uiſuum & punctũ
              <lb/>
            ſuperficiei uiſæ, in quo coniungũtur duo axes duorũ uiſuũ:</s>
            <s xml:id="echoid-s4024" xml:space="preserve"> erunt declinabiles à duobus axibus ad
              <lb/>
            unã partẽ.</s>
            <s xml:id="echoid-s4025" xml:space="preserve"> Nã omne punctũ ſuperficiei uiſi, in quo duo axes coniungũtur, declinabit à puncto con-
              <lb/>
            iunctionis ad eandẽ partẽ:</s>
            <s xml:id="echoid-s4026" xml:space="preserve"> punctũ uerò cõiunctionis eſt ſuper utrumq;</s>
            <s xml:id="echoid-s4027" xml:space="preserve"> axem.</s>
            <s xml:id="echoid-s4028" xml:space="preserve"> Remotiones autem
              <lb/>
            iſtarũ linearum à duobus axibus ſunt æquales:</s>
            <s xml:id="echoid-s4029" xml:space="preserve"> quoniã omnes duæ lineæ exeuntes à duobus cẽtris
              <lb/>
            duorũ uiſuum ad quodlibet punctum punctorũ ualde propinquorũ puncto cõiunctionis, æquali-
              <lb/>
            ter diſtant à duobus axibus, quantũ ad ſenſum.</s>
            <s xml:id="echoid-s4030" xml:space="preserve"> Duo enim axes exeuntes ad punctũ cõiunctionis,
              <lb/>
            erũt æquales, aut nõ erit inter eos diuerſitas ſenſibilis, quãdo res uiſa nõ fuerit ualde propinqua ui-
              <lb/>
            ſui, & diſtãtia eius à uiſu fuerit mediocris.</s>
            <s xml:id="echoid-s4031" xml:space="preserve"> Et ſimiliter eſt diſpoſitio cuiuslibet pũcti multũ propin-
              <lb/>
            qui pũcto cõiunctionis, ſcilicet, quòd omnes duæ lineæ exeũtes à duobus cẽtris duorũ uiſuum ad
              <lb/>
            quodlibet punctũ eorũ, ferè nõ differũt in longitudine quantùm ad ſenſum, ſed ferè erũt æquales.</s>
            <s xml:id="echoid-s4032" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>