Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(63)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div169
"
type
="
section
"
level
="
1
"
n
="
112
">
<
p
>
<
s
xml:id
="
echoid-s1633
"
xml:space
="
preserve
">
<
pb
o
="
63
"
file
="
0083
"
n
="
83
"
rhead
="
LIBER I.
"/>
L, ad, RT, vel vt, GΠ, ad, RZ, ſunt enim & </
s
>
<
s
xml:id
="
echoid-s1634
"
xml:space
="
preserve
">ipſæ, GL, RT,
<
lb
/>
ſimiliter ad eandem partem ſectę in punctis, Π, Z, nam ſimiliter ſe-
<
lb
/>
cantur ac, FC, PO, in punctis, Λ, Γ, ergo etiam reliqua, I Π, ad,
<
lb
/>
QZ, erit vt tota, GΠ, ad totam, RZ, ideſt vt, FC, ad, PO. </
s
>
<
s
xml:id
="
echoid-s1635
"
xml:space
="
preserve
">Eo-
<
lb
/>
dem modo oſtendemus, ΠH, ad, ZS, eſſe vt, FC, ad, PO, er-
<
lb
/>
go, IΠ, ad, QZ, erit vt, ΠH, ad, ZS, & </
s
>
<
s
xml:id
="
echoid-s1636
"
xml:space
="
preserve
">permutando, IΠ, ad,
<
lb
/>
ΠH, erit vt, QZ, ad, ZS, ſunt ergo latera homologa, IH, QS,
<
lb
/>
ſimiliter ad eandem partem ſecta à præfatis planis, quod eodem mo-
<
lb
/>
do de quibuſcumq; </
s
>
<
s
xml:id
="
echoid-s1637
"
xml:space
="
preserve
">homologis lateribus, quæ contingat dictis planis
<
lb
/>
ſecari, pariter oſtendemus, hoc verò demonſtrare propoſitum fuit.</
s
>
<
s
xml:id
="
echoid-s1638
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div171
"
type
="
section
"
level
="
1
"
n
="
113
">
<
head
xml:id
="
echoid-head124
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1639
"
xml:space
="
preserve
">_E_X boc autem Lemmate inſuper habetur nedum latera bomologa ſi-
<
lb
/>
milium ſolidorum, ſed etiam, ſi illa producantur vſq; </
s
>
<
s
xml:id
="
echoid-s1640
"
xml:space
="
preserve
">ad oppoſita
<
lb
/>
tangentia plana, eorum reſidua, vel ipſa tota, eſſe vt eorum dictas al-
<
lb
/>
titudines.</
s
>
<
s
xml:id
="
echoid-s1641
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div172
"
type
="
section
"
level
="
1
"
n
="
114
">
<
head
xml:id
="
echoid-head125
"
xml:space
="
preserve
">THEOREMA XXVI. PROPOS. XXIX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1642
"
xml:space
="
preserve
">SI in duobus ſimilibus ſolidis iuxta defin. </
s
>
<
s
xml:id
="
echoid-s1643
"
xml:space
="
preserve
">9. </
s
>
<
s
xml:id
="
echoid-s1644
"
xml:space
="
preserve
">vndec. </
s
>
<
s
xml:id
="
echoid-s1645
"
xml:space
="
preserve
">Elem.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1646
"
xml:space
="
preserve
">accipiantur, ac in eorumdem ambitu, duæ quæcumq; </
s
>
<
s
xml:id
="
echoid-s1647
"
xml:space
="
preserve
">
<
lb
/>
ſimiles figurę planę tanquam baſes, quibus parallela ducan-
<
lb
/>
tur quæcumq; </
s
>
<
s
xml:id
="
echoid-s1648
"
xml:space
="
preserve
">plana eadem ſecantia, necnon corum altitu-
<
lb
/>
dines, reſpectu dictarum baſium aſſumptas, ſimiliter ad ean-
<
lb
/>
dem partem diuidentia. </
s
>
<
s
xml:id
="
echoid-s1649
"
xml:space
="
preserve
">Productæ ijſdem in ſolidis figuræ
<
lb
/>
ſimiles erunt iuxta definitionem 10. </
s
>
<
s
xml:id
="
echoid-s1650
"
xml:space
="
preserve
">huius, & </
s
>
<
s
xml:id
="
echoid-s1651
"
xml:space
="
preserve
">omnium ho-
<
lb
/>
mologæ duabus quibuſdam regulis æquidiſtabunt.</
s
>
<
s
xml:id
="
echoid-s1652
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1653
"
xml:space
="
preserve
">Sint ſimilia ſolida iuxta defin. </
s
>
<
s
xml:id
="
echoid-s1654
"
xml:space
="
preserve
">9. </
s
>
<
s
xml:id
="
echoid-s1655
"
xml:space
="
preserve
">vndec. </
s
>
<
s
xml:id
="
echoid-s1656
"
xml:space
="
preserve
">Elem. </
s
>
<
s
xml:id
="
echoid-s1657
"
xml:space
="
preserve
">ipſa, AEFSOGo,
<
lb
/>
Tl & </
s
>
<
s
xml:id
="
echoid-s1658
"
xml:space
="
preserve
">p f8s, in eorum autem ambitu capiantur ſimiles quæcumque
<
lb
/>
figurę planę, OGFS, f8 & </
s
>
<
s
xml:id
="
echoid-s1659
"
xml:space
="
preserve
">p, quibus parallela ducantur duo quę-
<
lb
/>
cumque plana eadem ſecantia, necnon & </
s
>
<
s
xml:id
="
echoid-s1660
"
xml:space
="
preserve
">altitudines reſpectu dicta-
<
lb
/>
rum baſium aſſumptas ſimiliter ad eandem partem diuidentia, ac in
<
lb
/>
ipſis ſolidis figuras, LHMP, YVZd, producentia. </
s
>
<
s
xml:id
="
echoid-s1661
"
xml:space
="
preserve
">Dico has eſſe
<
lb
/>
ſimiles figuras planas icxta defin. </
s
>
<
s
xml:id
="
echoid-s1662
"
xml:space
="
preserve
">10. </
s
>
<
s
xml:id
="
echoid-s1663
"
xml:space
="
preserve
">huius, omniumque ſic produ-
<
lb
/>
ctarum in dictis ſolidis homologas duabus quibuſdam regulis, vtex.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1664
"
xml:space
="
preserve
">gr. </
s
>
<
s
xml:id
="
echoid-s1665
"
xml:space
="
preserve
">ipſis, OS, fp, æquidiſtare. </
s
>
<
s
xml:id
="
echoid-s1666
"
xml:space
="
preserve
">Igitur figurarum ambientium dicta
<
lb
/>
ſolida duæ aliæ ſimiles quæcumq; </
s
>
<
s
xml:id
="
echoid-s1667
"
xml:space
="
preserve
">capiantur cum baſibus concurren-
<
lb
/>
tes, vt ex. </
s
>
<
s
xml:id
="
echoid-s1668
"
xml:space
="
preserve
">gr. </
s
>
<
s
xml:id
="
echoid-s1669
"
xml:space
="
preserve
">oOS, sfp, ſimilia triangula, ducantur autem pręfa-
<
lb
/>
tis baſibus oppoſita tangentia plana, AC, TR, ſecantia </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>