Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 1: Opera mechanica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 5
[out of range]
>
[Note]
Page: 187
[Note]
Page: 188
[Note]
Page: 188
[Note]
Page: 188
[Note]
Page: 189
[Note]
Page: 190
[Note]
Page: 191
[Note]
Page: 192
[Note]
Page: 193
[Note]
Page: 194
[Note]
Page: 194
[Note]
Page: 198
[Note]
Page: 198
[Note]
Page: 199
[Note]
Page: 200
[Note]
Page: 200
[Note]
Page: 201
[Note]
Page: 201
[Note]
Page: 201
[Note]
Page: 202
[Note]
Page: 202
[Note]
Page: 202
[Note]
Page: 203
[Note]
Page: 203
[Note]
Page: 203
[Note]
Page: 207
[Note]
Page: 207
[Note]
Page: 208
[Note]
Page: 209
[Note]
Page: 209
<
1 - 5
[out of range]
>
page
|<
<
(59)
of 434
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div62
"
type
="
section
"
level
="
1
"
n
="
27
">
<
p
>
<
s
xml:id
="
echoid-s1256
"
xml:space
="
preserve
">
<
pb
o
="
59
"
file
="
0091
"
n
="
95
"
rhead
="
HOROLOG. OSCILLATOR.
"/>
aſcendet, quod ſimili parte temporis deſcendendo quoque
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0091-01
"
xlink:href
="
note-0091-01a
"
xml:space
="
preserve
">
<
emph
style
="
sc
">De de-</
emph
>
<
lb
/>
<
emph
style
="
sc
">SCENSU</
emph
>
<
lb
/>
<
emph
style
="
sc
">GRAVIUM</
emph
>
.</
note
>
tranſierat. </
s
>
<
s
xml:id
="
echoid-s1257
"
xml:space
="
preserve
">Hic vero rurſus celeritati tantum deceſſiſſe neceſſe
<
lb
/>
eſt quantum una temporis parte cadendo deorſum acquiritur,
<
lb
/>
hoc eſt celeritatem B D. </
s
>
<
s
xml:id
="
echoid-s1258
"
xml:space
="
preserve
">Itaque grave, ubi uſque ad B a-
<
lb
/>
ſcenderit, habet celeritatem ipſam B D reliquam, cum in E
<
lb
/>
habuerit celeritatem F E ipſius B D duplam. </
s
>
<
s
xml:id
="
echoid-s1259
"
xml:space
="
preserve
">Si ergo ex B
<
lb
/>
cum celeritate æquabili, quantam illic habet, ſurſum per-
<
lb
/>
geret, confecturum eſſet parte una temporis ſpatium æquale
<
lb
/>
ipſi D B, hoc eſt duplum A B. </
s
>
<
s
xml:id
="
echoid-s1260
"
xml:space
="
preserve
">Sed accedente gravitatis
<
lb
/>
actione, diminuitur aſcenſus iſte ſpatio quod ipſi A B æqua-
<
lb
/>
le ſit. </
s
>
<
s
xml:id
="
echoid-s1261
"
xml:space
="
preserve
">Igitur hac parte temporis aſcendet tantummodo per
<
lb
/>
ſpatium B A, quod etiam primo deſcenſus tempore trans-
<
lb
/>
ierat. </
s
>
<
s
xml:id
="
echoid-s1262
"
xml:space
="
preserve
">Atque in fine quidem extremi temporis hujus neceſſa-
<
lb
/>
rio grave in A puncto reperietur. </
s
>
<
s
xml:id
="
echoid-s1263
"
xml:space
="
preserve
">Sed dicetur forſan altius
<
lb
/>
aſcendiſſe quam ad A, atque inde eo relapſum eſſe. </
s
>
<
s
xml:id
="
echoid-s1264
"
xml:space
="
preserve
">At hoc
<
lb
/>
abſurdum eſſet, cum non poſſit, notu à gravitate profecto, al-
<
lb
/>
tius quam unde decidit aſcendere. </
s
>
<
s
xml:id
="
echoid-s1265
"
xml:space
="
preserve
">Porro quum celeritati quam
<
lb
/>
in B habebat rurſus deceſſerit celeritas B D, patet jam gra-
<
lb
/>
vi in A conſtituto nullam celeritatem ſupereſſe, ac proinde
<
lb
/>
non altius excurſurum. </
s
>
<
s
xml:id
="
echoid-s1266
"
xml:space
="
preserve
">Itaque oſtenſum eſt ad eandem unde
<
lb
/>
decidit altitudinem perveniſſe, & </
s
>
<
s
xml:id
="
echoid-s1267
"
xml:space
="
preserve
">ſingula ſpatia, quæ æqua-
<
lb
/>
libus deſcenſus temporibus tranſmiſerat, eadem totidem a-
<
lb
/>
ſcenſus temporibus remenſum eſſe: </
s
>
<
s
xml:id
="
echoid-s1268
"
xml:space
="
preserve
">ſed & </
s
>
<
s
xml:id
="
echoid-s1269
"
xml:space
="
preserve
">æqualibus tempo-
<
lb
/>
ribus æqualia ipſi deceſſiſſe celeritatis momenta apparuit. </
s
>
<
s
xml:id
="
echoid-s1270
"
xml:space
="
preserve
">Ergo
<
lb
/>
conſtat propoſitum.</
s
>
<
s
xml:id
="
echoid-s1271
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1272
"
xml:space
="
preserve
">Quia vero in demonſtratione propoſitionis ſecundæ, ex
<
lb
/>
qua pendet præcedens, adſumptum fuit certam quandam eſ-
<
lb
/>
ſe proportionem ſpatiorum quæ continuis æqualibus tempo-
<
lb
/>
ribus à gravi cadente transeuntur, quæque eadem ſit, quæ-
<
lb
/>
cunque æqualia tempora accipiantur; </
s
>
<
s
xml:id
="
echoid-s1273
"
xml:space
="
preserve
">quod quidem & </
s
>
<
s
xml:id
="
echoid-s1274
"
xml:space
="
preserve
">ex
<
lb
/>
rei natura ita ſe habere neceſſe eſt, & </
s
>
<
s
xml:id
="
echoid-s1275
"
xml:space
="
preserve
">ſi negetur, fatendum
<
lb
/>
fruſtra proportionem iſtorum ſpatiorum inveſtigari. </
s
>
<
s
xml:id
="
echoid-s1276
"
xml:space
="
preserve
">Tamen,
<
lb
/>
quia propoſitum etiam absque hoc demonſtrari poteſt, Ga-
<
lb
/>
lilei methodum ſequendo, operæ pretium erit demonſtra-
<
lb
/>
tionem, ab illo minus perfecte traditam, hic accuratius
<
lb
/>
conſcribere. </
s
>
<
s
xml:id
="
echoid-s1277
"
xml:space
="
preserve
">itaque rurſum hic demonſtrabimus.</
s
>
<
s
xml:id
="
echoid-s1278
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>