DelMonte, Guidubaldo, Mechanicorvm Liber

Table of figures

< >
[Figure 151]
[Figure 152]
[Figure 153]
[Figure 154]
[Figure 155]
[Figure 156]
[Figure 157]
[Figure 158]
[Figure 159]
[Figure 160]
[Figure 161]
[Figure 162]
[Figure 163]
[Figure 164]
[Figure 165]
[Figure 166]
[Figure 167]
[Figure 168]
[Figure 169]
[Figure 170]
[Figure 171]
[Figure 172]
[Figure 173]
[Figure 174]
[Figure 175]
[Figure 176]
[Figure 177]
[Figure 178]
[Figure 179]
[Figure 180]
< >
page |< < of 288 > >|
    <archimedes>
      <text>
        <body>
          <chap id="N13F6F">
            <p id="id.2.1.161.8.0.0.0" type="main">
              <s id="id.2.1.161.8.1.4.0">
                <pb xlink:href="036/01/168.jpg"/>
              & pondus in k appenſum. </s>
              <s id="id.2.1.161.8.1.5.0">
                <lb/>
              quòd ſi punctum C omnino fue
                <lb/>
              rit immobile, moueaturq; ve
                <lb/>
              ctis EC in NC; & diuidatur
                <lb/>
              NC bifariam in L: erunt CL
                <lb/>
              LN ipſis Ck KE æquales. </s>
              <s id="id.2.1.161.8.1.6.0">
                <lb/>
              quare ſi vectis EC eſſet in CN,
                <lb/>
              punctum k eſſet in L; & ſi du
                <lb/>
              catur LM horizonti perpendi
                <lb/>
              cularis, quæ ſit etiam æqualis
                <lb/>
              kH; eſſet pondus A, hoc eſt
                <lb/>
              punctum H in M. </s>
              <s id="id.2.1.161.8.1.6.0.a">ſed quoniam
                <lb/>
              potentia in F dum tendit ſur­
                <lb/>
              ſum mouendo orbiculum, ſem
                <lb/>
              per mouetur ſuper rectam EFG,
                <lb/>
              quæ ſemper eſt quoq; æquidi
                <lb/>
              ſtans BC; neceſſe erit orbicu
                <lb/>
              lum trochleæ ſemper inter li­
                <lb/>
              neas EG BC eſſe: & centrum
                <lb/>
              k, cum ſit in medio, ſuper
                <lb/>
              rectam lineam HkT ſemper
                <lb/>
              moueri. </s>
              <s id="id.2.1.161.8.1.7.0">Itaq; ducatur per L li
                <lb/>
              nea PTLQ horizonti, & EC
                <lb/>
              æquidiſtans, quæ ſecet Hk pro­
                <lb/>
              ductam in T; & centro T, ſpa
                <lb/>
              tio verò TQ, circulus deſcriba
                <lb/>
                <figure id="id.036.01.168.1.jpg" place="text" xlink:href="036/01/168/1.jpg" number="160"/>
                <lb/>
              tur QRPS, qui æqualis erit circulo CED; & puncta PQ tangent fu
                <lb/>
                <arrow.to.target n="note247"/>
              nes FE BC in PQ punctis. </s>
              <s id="id.2.1.161.8.1.8.0">rectangulum enim eſt PECQ, &
                <lb/>
              PT TQ ipſis EK kC ſunt æquales. </s>
              <s id="id.2.1.161.8.1.9.0">deinde per T ducatur R
                <lb/>
              TS diameter circuli PQS æquidiſtans ipſi NC; fiat〈qué〉 TO æqua
                <lb/>
              lis kH. </s>
              <s id="id.2.1.161.8.1.9.0.a">dum autem centrum k motum erit vſq; ad lineam PQ,
                <lb/>
              tunc centrum k erit in T. </s>
              <s id="N14C4A">oſtenſum eſt enim centrum orbiculi ſu
                <lb/>
              per rectam HT ſemper moueri. </s>
              <s id="id.2.1.161.8.1.10.0">idcirco vt centrum k ſit in li
                <lb/>
              nea PQ ipſi EC æquidiſtante, neceſſe eſt vt ſit in T. </s>
              <s id="N14C53">& vt vectis
                <lb/>
              EC eleuetur in angulo ECN, neceſſe eſt, vt ſit in RS, non au­
                <lb/>
                <arrow.to.target n="note248"/>
              tem in CN: angulus enim RSE angulo NCE eſt æqualis, & ſic </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>