DelMonte, Guidubaldo, Mechanicorvm Liber

Table of figures

< >
[Figure 191]
[Figure 192]
[Figure 193]
[Figure 194]
[Figure 195]
[Figure 196]
[Figure 197]
[Figure 198]
[Figure 199]
[Figure 200]
[Figure 201]
[Figure 202]
[Figure 203]
[Figure 204]
[Figure 205]
[Figure 206]
[Figure 207]
[Figure 208]
[Figure 209]
[Figure 210]
[Figure 211]
[Figure 212]
[Figure 213]
[Figure 214]
[Figure 215]
[Figure 216]
[Figure 217]
[Figure 218]
[Figure 219]
[Figure 220]
< >
page |< < of 288 > >|
85
Si autem funis in G circa alium reuoluatur
orbiculum, cuius centrum k; ſitq; huiuſmo
di orbiculi trochlea deorſum affixa, quæ nul
lum alium habeat motum, niſi liberam orbi
culi circa axem reuolutionem; funiſq; relige
tur in M; erit potentia in H ſuſtinens pondus
B ſimiliter ipſius ponderis dupla.
quod qui
dem manifeſtum eſt, cùm idem prorſus ſit,
ſiue funis ſit religatus in M, ſiue in G.
orbicu
lus enim, cuius centrum k, nihil efficit; penituſ
〈qué〉 inutilis eſt. 170[Figure 170]
Si verò ſit potentia in M ſuſtinens pon
dus B, & trochlea ſuperior ſit ſurſum appen
ſa; erit potentia in M æqualis ponderi B.
Quoniam enim potentia in G ſuſtinens
pondus B æqualis eſt ponderi B, & ipſi po
tentiæ in G æqualis eſt potentia in L; eſt
enim GL vectis, cuius fulcimentum eſt k;
& diſtantia Gk diſtantiæ kL eſt æqualis;
erit igitur potentia in L, ſiue (quod idem eſt)
in M, ponderi B æqualis.
1 Huius.
Huiuſmodi autem motus fit vectibus DF LG, quorum fulci
menta ſunt kA, & pondus in D, & potentia in F.
ſed in vecte
LG potentia eſt in L, pondus verò, ac ſi eſſet in G.
Si deinde in M ſit potentia mouens pondus, transferaturq; po
tentia in N, pondus autem motum fuerit vſq; ad O; erit MN
ſpatium potentiæ æquale ſpatio CO ponderis.
Cùm enim funis
MLGFDC æqualis ſit funi NLGFDO.
eſt enim idem funis;
dempto communi MLGFDO; erit ſpatium MN potentiæ æ­
quale ſpatio CO ponderis.
Et ſi funis in M circa plures reuoluatur orbiculos, ſemper erit
potentia altero eius extremo pondus ſuſtinens æqualis ipſi ponderi.

ſpatiaq; ponderis, atq; potentiæ mouentis ſemper oſtendentur
æqualia.

Text layer

  • Dictionary
  • Places

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index