249219LIBER QVINTVS.
vt B, ad E, ita D, ad F;
quod vtrobique poſita ſit eadem proportio multiplex:
e-
rit ex æquo, vt A ad E, ita C, ad F. quod eſt propoſitum.
rit ex æquo, vt A ad E, ita C, ad F. quod eſt propoſitum.
Idem ſequitur ſi A, &
C, ſintipſarum B, D, eædem partes plures non facien-
tes vnam: Item, ſi E, & F, earundem B, D, ſint eædem partes plures non facien-
tes vnam, vt {2/3}. vel {3/5}. & c. Nam ſi verbi gratia A, C, ſint {3/4}. ipſarum B, D, erit
{1/4}. ipſius B, ad B, vt {1/4}. ipſius D, ad D. Igitur erunt quoq; , vt {3/4}. ipſius B, 11ſchol. 22.
quinti. eſt, ipſa A, ad B, ita {3/4}. ipſius D, hoc eſt, ipſa C, ad D. Rurſus ſi verbi gratia E, F,
ſint {2/3}. ipſarum B, D, erit, vt B, ad {1/3}. eiuſdem B, ita D, ad {1/3}. eiuſdem D. 22ſchol. 22.
quinti. inde vt B, ad {2/3}. id eſt, ad E, ita D, ad {2/3}. id eſt, ad F. Quare, vt prius, erit ex æquo,
vt A, ad E, ita C. ad F.
tes vnam: Item, ſi E, & F, earundem B, D, ſint eædem partes plures non facien-
tes vnam, vt {2/3}. vel {3/5}. & c. Nam ſi verbi gratia A, C, ſint {3/4}. ipſarum B, D, erit
{1/4}. ipſius B, ad B, vt {1/4}. ipſius D, ad D. Igitur erunt quoq; , vt {3/4}. ipſius B, 11ſchol. 22.
quinti. eſt, ipſa A, ad B, ita {3/4}. ipſius D, hoc eſt, ipſa C, ad D. Rurſus ſi verbi gratia E, F,
ſint {2/3}. ipſarum B, D, erit, vt B, ad {1/3}. eiuſdem B, ita D, ad {1/3}. eiuſdem D. 22ſchol. 22.
quinti. inde vt B, ad {2/3}. id eſt, ad E, ita D, ad {2/3}. id eſt, ad F. Quare, vt prius, erit ex æquo,
vt A, ad E, ita C. ad F.
COROLLARIVM.
Seqvitvr hinc, ita eſſe {1/4}.
cuiuſuis magnitudinis ad {1/3}.
eiuſdem, vt eſt {1/2}.
cuiuſuis alteri9 magnitudinis ad {2/3}. eiuſdẽ. Quoniã. n. vt oſtendim9, ita eſt {1/4}. prio-
ris magnitudinis ad {1/3}. eiuſdem, vt {1/4}. poſterioris ad {1/3}. eiuſdem. Vtautem {1/4}. 331. quiuti. poſterioris ad {1/3}. ita ſunt {2/4}. ad {2/3}. hoc eſt, {1/2}. ad {2/3}. Igitur erit vt {1/4}. prioris
magnitudinis ad {1/3}. eiuſdem, ita {1/2}. poſterioris magnitudinis ad {2/3}. eiuſdem.
cuiuſuis alteri9 magnitudinis ad {2/3}. eiuſdẽ. Quoniã. n. vt oſtendim9, ita eſt {1/4}. prio-
ris magnitudinis ad {1/3}. eiuſdem, vt {1/4}. poſterioris ad {1/3}. eiuſdem. Vtautem {1/4}. 331. quiuti. poſterioris ad {1/3}. ita ſunt {2/4}. ad {2/3}. hoc eſt, {1/2}. ad {2/3}. Igitur erit vt {1/4}. prioris
magnitudinis ad {1/3}. eiuſdem, ita {1/2}. poſterioris magnitudinis ad {2/3}. eiuſdem.
PROPOSITIO II.
RECTANGVLVM ſub diametro, &
circumferentia maximi circuli
in ſphæra comprehenſum, quadruplum eſt circuli maximi, & ſuper-
ficiei conuexæ eiuſdem ſphęræ ęquale.
in ſphæra comprehenſum, quadruplum eſt circuli maximi, & ſuper-
ficiei conuexæ eiuſdem ſphęræ ęquale.
Sit rectangulum AB, comprehenſum ſub diametro AC, &
circumferentia
CB, maximi in ſphæra circuli. Dico rectangulum AB,
162[Figure 162] quadruplum eſſe circuli maximi in ſphæra, & ſuperficiei
conuexæ eiuſdem ſphæræ ęquale. Sectis enim omnibus
lateribus bifariam in E, F, G, H, iunctiſquerectis EG, FH,
ſecantibus ſeſe in I, diuiſum erit totum rectangulum in
quatuor æqualia A I, C I, B I, D I, quodrectæ E G, F 4433. primi. rectis A D, A C, parallelæ ſint. Ac proinderectangulum A B, rectanguli C I,
quadruplum erit. Eſt autem rectangulum C I, contentum ſub C E, ſemidia-
metro, & ſemicircumferentia C F, circulo maximo, cuius nimirum diameter
A C, ęquale, vt lib. 4. capit. 7. Nume. 1. demonſtratum eſt. lgitur rectangu-
lum A B, circulimaximi quadruplum eſt. Et quia eiuſdem circuli maximi qua-
drupla eſt ſuperficies conuexa ſphærę, per propoſ. 31. lib. 1. Archimedis de ſphę-
ra, & Cylindro: ęquale erit rectangulum A B, conuexæ ſuperficiei, quod 559. quinti. rat demonſtrandum.
CB, maximi in ſphæra circuli. Dico rectangulum AB,
162[Figure 162] quadruplum eſſe circuli maximi in ſphæra, & ſuperficiei
conuexæ eiuſdem ſphæræ ęquale. Sectis enim omnibus
lateribus bifariam in E, F, G, H, iunctiſquerectis EG, FH,
ſecantibus ſeſe in I, diuiſum erit totum rectangulum in
quatuor æqualia A I, C I, B I, D I, quodrectæ E G, F 4433. primi. rectis A D, A C, parallelæ ſint. Ac proinderectangulum A B, rectanguli C I,
quadruplum erit. Eſt autem rectangulum C I, contentum ſub C E, ſemidia-
metro, & ſemicircumferentia C F, circulo maximo, cuius nimirum diameter
A C, ęquale, vt lib. 4. capit. 7. Nume. 1. demonſtratum eſt. lgitur rectangu-
lum A B, circulimaximi quadruplum eſt. Et quia eiuſdem circuli maximi qua-
drupla eſt ſuperficies conuexa ſphærę, per propoſ. 31. lib. 1. Archimedis de ſphę-
ra, & Cylindro: ęquale erit rectangulum A B, conuexæ ſuperficiei, quod 559. quinti. rat demonſtrandum.
COROLLARIVM.
EX demonſtratione liquet, rectangulum ſub diametro cuiuſuis circuli, (et-
iamſi non ſit maximus in ſphęra,) & circumferentia eiuſdem, quadruplum eſſe
ipſius circuli. Eadem enim ſemper demonſtratio adhibebitur.
iamſi non ſit maximus in ſphęra,) & circumferentia eiuſdem, quadruplum eſſe
ipſius circuli. Eadem enim ſemper demonſtratio adhibebitur.