Clavius, Christoph, In Sphaeram Ioannis de Sacro Bosco commentarius

Table of figures

< >
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
< >
page |< < (224) of 525 > >|
261224Comment. in II. Cap. Sphæræ tem propoſitiones Theodoſij in his proprietatibus ſecundum exemplar Græ-
cum, iuxta quod nunc Theodoſium unà cum triangulis, &
tractatione ſinuum
in lucem edimus, ubi propoſitiones, illas, quas Arabes addiderunt, in ſcholia
reijcim us.
11Procl’ quo
pacto circu
los ſphæræ
diuidat.
Proclvs in ſphæra, quam conſcripſit, aliam diuiſionem circulorum
ſphęræ inſtituit.
Non enim decẽ illos circulos primarios diuidit in maximos,
&
nõ maximos, ſed in circulos ęquidiſtãtes, parallelosve, in obliquos, & in eos,
qui per polos mundi ſunt ducti.
Æquidiſtantes circulos appellat eos, quorum
poli ijdem ſunt, qui poli mundi;
cuiuſmodi ſunt quinque circuli in ſphæra, ni-
mirũ Æequator, tropicus ♋, tropicus ♑, circulus arcticus, &
circulus antarcti
cus:
Hi enim circuli æquidiſtantes ſunt inter ſe, ut conſtat ex propoſ. a. lib. 2.
Theodoſij. Obliquos cireulos uocat eos, qui circulos parallelos, quos ſecãt,
76[Figure 76]

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index