DelMonte, Guidubaldo, Mechanicorvm Liber

Table of figures

< >
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
< >
page |< < of 288 > >|
1pendicularis, ſcilicet do­
nec CG in CD redeat.

Quando autem CG erit
in CD, linea EF, cùm
ipſi CG ſemper ad rectos
ſit angulos, erit in AB; in
quo ſitu quoq; manebit.
li
bra ergo EF in AB hori­
zonti æquidiſtantem redi
bit, ibíq; manebit.
quod
demonſtrare oportebat.
4. primi Archi
medis de
æqueponde­
rantibus.
1. Huius1. Huius.
8[Figure 8]
PROPOSITIO III.
Libra horizonti æquidiſtans æqualia in extre­
mitatibus, æqualiterq; à perpendiculo diſtan­
tia habens pondera, centro infernè collocato, in
hoc ſitu manebit.
ſi verò inde moueatur, deor­
ſum relicta, ſecundùm partem decliuiorem mo­
uebitur. 9[Figure 9]
Sit libra AB rectá li­
nea horizonti æquidi­
ſtans, cuius centrum C
ſit infra libram; perpen­
diculumq; ſit CD, quod
horizonti perpendiculare
erit; & diſtantia AD ſit
diſtantiæ DB æqualis;
ſintq; in AB pondera
æqualia, quorum grauita­
tis centra ſint in punctis
AB.
Dico primùm libram AB in hoc ſitu manere. Quoniam
enim AB bifariam diuiditur à puncto D, & pondera in AB ſunt
æqualia; erit punctum D centrum grauitatis magnitudinis ex

Text layer

  • Dictionary
  • Places

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index