Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Table of figures

< >
[61] Fig. 5.G L B H D O A E C K
[62] Fig. 7.K F A C D B E H G
[63] Pag. 404.TAB. XLII.Fig. 1.K F M A C D B L E N G
[64] Fig. 3.G R D B H F E N A X C M P Q K
[65] Fig. 2.K A F c S C L E B T G D R d
[66] Fig. 4.K e G P E m B D f R F S H M C A N L Q n
[67] Fig. 5.B C R E G A F M Q D O
[68] Fig. 6.B C H G E A M Q P K D
[69] Fig. 7.B C E G A M P Q K H D
[Figure 70]
[71] Pag. 450.TAB.XLIII.Fig. 4.B A F R P C D E G H I K S L M N O
[72] Fig. 1.F G I K D L E S T O C N H M V R B Q P A
[73] Fig. 2.F G I K D L E S T O C N V R B Q P A
[74] Fig. 5.A C B D E
[75] Fig. 3.A F G I K D L S T E O C N H M V R B Q P
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[83] TAB. XLIV.Fig. 2.D H A B E F G
[84] Fig. 1.E G N L O I Q P D K M H F A
[85] Fig. 3.B E F A D G C
[86] I. CasusFig. 4.Y Q R C A B M L I K V C O S X
[87] II. CasusFig. 5.R C Y Q A B I L M K V O X S C
[88] III. CasusFig. 6.Q C D Y K L I N M S V B X C A G O
[89] Fig. 7.IV. CasusQ D C A B S L N X M I V Y K C G O
[Figure 90]
< >
page |< < (382) of 568 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div95" type="section" level="1" n="44">
          <p>
            <s xml:id="echoid-s1843" xml:space="preserve">
              <pb o="382" file="0094" n="100" rhead="CHRISTIANI HUGENII"/>
            ret portionem A B C ad inſcriptum triangulum minorem ha-
              <lb/>
            bere rationem quam triplam ſeſquitertiam D F ad duplam
              <lb/>
            E B, hoc eſt, diametrum B F, unà cum tripla E D. </s>
            <s xml:id="echoid-s1844" xml:space="preserve">Quod
              <lb/>
            erat demonſtrandum.</s>
            <s xml:id="echoid-s1845" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div99" type="section" level="1" n="45">
          <head xml:id="echoid-head68" xml:space="preserve">
            <emph style="sc">Theor</emph>
          . XVI.
            <emph style="sc">Propos</emph>
          . XIX.</head>
          <p style="it">
            <s xml:id="echoid-s1846" xml:space="preserve">ARcus quilibet ſemicirumferentiâ minor, ma-
              <lb/>
            jor eſt ſuâ ſubtenſâ ſimul & </s>
            <s xml:id="echoid-s1847" xml:space="preserve">triente differen-
              <lb/>
            tiæ quâ ſubtenſa ſinum excedit. </s>
            <s xml:id="echoid-s1848" xml:space="preserve">Idem verò minor
              <lb/>
            quam ſubtenſa ſimul cum ea quæ ad dictum trien-
              <lb/>
            tem ſeſe habeat, ut quadrupla ſubtenſa juncta ſi-
              <lb/>
            nui ad ſubtenſam duplam cum ſinu triplo.</s>
            <s xml:id="echoid-s1849" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s1850" xml:space="preserve">Eſto circulus cujus D centrum, diameter F B. </s>
            <s xml:id="echoid-s1851" xml:space="preserve">Et ſit ar-
              <lb/>
              <note position="left" xlink:label="note-0094-01" xlink:href="note-0094-01a" xml:space="preserve">TAB. XL.
                <lb/>
              Fig. 5.</note>
            cus B A ſemicircumferentiâ minor, cui ſubtenſa ducatur
              <lb/>
            B A, ſinus autem A M: </s>
            <s xml:id="echoid-s1852" xml:space="preserve">quæ nimirum diametro F B ſit ad
              <lb/>
            angulos rectos. </s>
            <s xml:id="echoid-s1853" xml:space="preserve">Porro ipſi A M ſit æqualis recta G H, & </s>
            <s xml:id="echoid-s1854" xml:space="preserve">
              <lb/>
            G I æqualis ſubtenſæ A B. </s>
            <s xml:id="echoid-s1855" xml:space="preserve">Exceſſus igitur eſt H I; </s>
            <s xml:id="echoid-s1856" xml:space="preserve">cujus
              <lb/>
            triens I K ipſi G I adjiciatur. </s>
            <s xml:id="echoid-s1857" xml:space="preserve">Oſtendendum eſt primo, ar-
              <lb/>
            cum A B totâ G K majorem eſſe. </s>
            <s xml:id="echoid-s1858" xml:space="preserve">Hoc autem ex Theore-
              <lb/>
            mate 7. </s>
            <s xml:id="echoid-s1859" xml:space="preserve">eſt manifeſtum. </s>
            <s xml:id="echoid-s1860" xml:space="preserve">At cum ipſi G I additur IO quæ
              <lb/>
            ad I K trientem ipſius H I rationem habeat, quam quadru-
              <lb/>
            pla G I una cum G H ad duplam G I cum tripla G H.
              <lb/>
            </s>
            <s xml:id="echoid-s1861" xml:space="preserve">Dico totam G O arcu A B majorem eſſe. </s>
            <s xml:id="echoid-s1862" xml:space="preserve">Conſtituantur enim
              <lb/>
            ſuper lineis G H, H I, IO, triangula quorum communis
              <lb/>
            vertex ſit L, altitudo autem æqualis radio D B. </s>
            <s xml:id="echoid-s1863" xml:space="preserve">Et junga-
              <lb/>
            tur D A, ducaturque diameter circuli C E quæ rectam
              <lb/>
            A B bifariam dividat in N, arcum vero A B in E. </s>
            <s xml:id="echoid-s1864" xml:space="preserve">Et jun-
              <lb/>
            gantur A E, E B.</s>
            <s xml:id="echoid-s1865" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s1866" xml:space="preserve">Quoniam igitur O I eſt ad I K ut quadrupla G I unà
              <lb/>
            cum G H ad duplam G I cum tripla G H; </s>
            <s xml:id="echoid-s1867" xml:space="preserve">ſumptis conſequen-
              <lb/>
            tium triplis erit O I ad I H (hæc enim tripla eſt I K,) ut
              <lb/>
            quadrupla G I unà cum G H ad ſexcuplam G I cum non-
              <lb/>
            cupla G H. </s>
            <s xml:id="echoid-s1868" xml:space="preserve">Et componendo, O H ad H I, ut </s>
          </p>
        </div>
      </text>
    </echo>