Bošković, Ruđer Josip
,
Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of figures
<
1 - 17
[out of range]
>
<
1 - 17
[out of range]
>
page
|<
<
(49)
of 389
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
0
"
n
="
0
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
49
"
file
="
0101
"
n
="
101
"
rhead
="
PARS PRIMA.
"/>
hil ſane obeſſet, cum poſitivo argumento evincatur & </
s
>
<
s
xml:space
="
preserve
">repul-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0101-01
"
xlink:href
="
note-0101-01a
"
xml:space
="
preserve
">verſi ſint ge,
<
lb
/>
neris: ſed eſſe
<
lb
/>
ejuſdem, uti
<
lb
/>
ſunt poſitiva,
<
lb
/>
& negativa.</
note
>
ſio, & </
s
>
<
s
xml:space
="
preserve
">attractio, uti vidimus; </
s
>
<
s
xml:space
="
preserve
">at id ipſum eft omnino falſum.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Utraque vis ad eandem pertinet ſpeciem, cum altera reſpectu
<
lb
/>
alterius negativa ſit, & </
s
>
<
s
xml:space
="
preserve
">negativa a poſitivis ſpecie non diffe-
<
lb
/>
rant. </
s
>
<
s
xml:space
="
preserve
">Alteram negativam eſſe reſpectu alterius, patet inde,
<
lb
/>
quod tantummodo differant in directione, quæ in altera eſt
<
lb
/>
prorſus oppoſita directioni alterius; </
s
>
<
s
xml:space
="
preserve
">in altera enim habetur de-
<
lb
/>
terminatio ad acceſſum, in altera ad receſſum, & </
s
>
<
s
xml:space
="
preserve
">uti receſſus,
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">acceſſus ſunt poſitivum, ac negativum; </
s
>
<
s
xml:space
="
preserve
">ita ſunt pariter & </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
determinationes ad ipſos. </
s
>
<
s
xml:space
="
preserve
">Quod autem negativum, & </
s
>
<
s
xml:space
="
preserve
">poſiti-
<
lb
/>
vum ad eandem pertineant ſpeciem, id ſane patet vel ex eo
<
lb
/>
principio: </
s
>
<
s
xml:space
="
preserve
">magis, & </
s
>
<
s
xml:space
="
preserve
">minus non differunt ſpecie. </
s
>
<
s
xml:space
="
preserve
">Nam a po-
<
lb
/>
ſitivo per continuam ſubtractionem, nimirum diminutionem,
<
lb
/>
habentur prius minora poſitiva, tum zero, ac demum negati-
<
lb
/>
va, continuando ſubtractionem eandem.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">109. </
s
>
<
s
xml:space
="
preserve
">Id facile patet exemplis ſolitis. </
s
>
<
s
xml:space
="
preserve
">Eat aliquis contra flu-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0101-02
"
xlink:href
="
note-0101-02a
"
xml:space
="
preserve
">Probatio h
<
gap
/>
<
lb
/>
jus a progreſ.
<
lb
/>
ſu, & regreſſu.
<
lb
/>
in fluvio.</
note
>
vii directionem verſus locum aliquem ſuperiori alveo proxi-
<
lb
/>
mum, & </
s
>
<
s
xml:space
="
preserve
">ſingulis minutis perficiat remis, vel vento 100 hexa-
<
lb
/>
pedas, dum a curſu fluvii retroagitur per hexapedas 40; </
s
>
<
s
xml:space
="
preserve
">is
<
lb
/>
habet progreſſum hexapedarum 60 ſingulis minutis. </
s
>
<
s
xml:space
="
preserve
">Creſcat au-
<
lb
/>
tem continuo impetus fluvii ita, ut retroagatur per 50, tum
<
lb
/>
per 60, 70, 80, 90, 100, 110, 120 &</
s
>
<
s
xml:space
="
preserve
">c. </
s
>
<
s
xml:space
="
preserve
">Is progredietur per 50,
<
lb
/>
40, 30, 20, 10, nihil; </
s
>
<
s
xml:space
="
preserve
">tum regredietur per 10, 20, quæ erunt
<
lb
/>
negativa priorum; </
s
>
<
s
xml:space
="
preserve
">nam erat prius 100 - 50, 100 - 60, 100
<
lb
/>
- 70, 100 - 80, 100 - 90, tum 100 - 100=0, 100-
<
lb
/>
110= - 10, 100 - 120= - 20, & </
s
>
<
s
xml:space
="
preserve
">ita porro. </
s
>
<
s
xml:space
="
preserve
">Continua
<
lb
/>
imminutione, ſive ſubtractione itum eſt a poſitivis in negati-
<
lb
/>
va, a progreſſu ad regreſſum, in quibus idcirco eadem ſpe-
<
lb
/>
cies manſit, non duæ diverſæ.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">110. </
s
>
<
s
xml:space
="
preserve
">Idem autem & </
s
>
<
s
xml:space
="
preserve
">algebraicis formulis, & </
s
>
<
s
xml:space
="
preserve
">geometricis li-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0101-03
"
xlink:href
="
note-0101-03a
"
xml:space
="
preserve
">Probatio ex
<
lb
/>
Algebra, &
<
lb
/>
Geometria:
<
lb
/>
applicatio ad
<
lb
/>
omnes quanti-
<
lb
/>
tates variabi-
<
lb
/>
les.</
note
>
neis ſatis manifeſte oſtenditur. </
s
>
<
s
xml:space
="
preserve
">Sit formula 10 - x, & </
s
>
<
s
xml:space
="
preserve
">pro
<
lb
/>
x ponantur valores 6, 7, 8, 9, 10, 11, 12 &</
s
>
<
s
xml:space
="
preserve
">c.</
s
>
<
s
xml:space
="
preserve
">; valor for-
<
lb
/>
mulæ exhibebit 4, 3, 2, 1, 0, - 1, -2 &</
s
>
<
s
xml:space
="
preserve
">c.</
s
>
<
s
xml:space
="
preserve
">, quod eodem
<
lb
/>
redit, ubi erat ſuperius in progreſſu, & </
s
>
<
s
xml:space
="
preserve
">regreſſu, qui exprime-
<
lb
/>
rentur ſimul per formulam 10 - x. </
s
>
<
s
xml:space
="
preserve
">Eadem illa formula per
<
lb
/>
continuam mutationem valoris x migrat e valore poſitivo in
<
lb
/>
negativum, qui æque ad eandem formulam pertinent. </
s
>
<
s
xml:space
="
preserve
">Eodem
<
lb
/>
pacto in Geometria in fig. </
s
>
<
s
xml:space
="
preserve
">11, ſi duæ lineæ MN, OP refe-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0101-04
"
xlink:href
="
note-0101-04a
"
xml:space
="
preserve
">Fig. 11.</
note
>
rantur invicem per ordinatas AB, CD &</
s
>
<
s
xml:space
="
preserve
">c parallelas inter
<
lb
/>
ſe, ſecent autem ſe in E; </
s
>
<
s
xml:space
="
preserve
">continuo motu ipſius ordinatæ a
<
lb
/>
poſitivo abitur in negativum, mutata directione AB, CD,
<
lb
/>
quæ hic habentur pro poſitivis, in FG, HI, poſt evaneſcen-
<
lb
/>
tiam in E. </
s
>
<
s
xml:space
="
preserve
">Ad eandem lineam continuam OEP æque per-
<
lb
/>
tinet omnis ea ordinatarum ſeries, nec eſt altera linea, alter
<
lb
/>
locus geometricus O E, ubi ordinatæ ſunt poſitivæ, ac EP,
<
lb
/>
ubi ſunt negativæ. </
s
>
<
s
xml:space
="
preserve
">Jam vero variabilis quantitatis cujuſvis
<
lb
/>
natura, & </
s
>
<
s
xml:space
="
preserve
">lex plerumque per formulam aliquam analyticam,
<
lb
/>
ſemper per ordinatas ad lineam aliquam exprimi poteſt; </
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>