Angeli, Stefano degli, Miscellaneum hyperbolicum et parabolicum : in quo praecipue agitur de centris grauitatis hyperbolae, partium eiusdem, atque nonnullorum solidorum, de quibus nunquam geometria locuta est, parabola nouiter quadratur dupliciter, ducuntur infinitarum parabolarum tangentes, assignantur maxima inscriptibilia, minimaque circumscriptibilia infinitis parabolis, conoidibus ac semifusis parabolicis aliaque geometrica noua exponuntur scitu digna

Table of contents

< >
[Item 1.]
[2.] MISCELL ANEVM HYPERBOLICVM, ET PARABOLICVM. IN QVO PRÆCIPVE AGITVR DE CENTRIS Grauitatis Hyperbolæ, partium eiuſdem, Atque nonnullorum ſolidorum, de quibus nunquam Geometria locuta eſt. Parabola nouiter quadratur dupliciter. Ducuntur infinitarum parabolarum tangentes. Aſſignantur maxima inſcriptibilia, minimaque circumſcriptibilia Infinitis Parabolis, Conoidibus, ac ſemifuſis parabolicis. Aliaque Geometrica noua exponuntur ſcitu digna. AVTHORE F. STEPHANODE ANGELIS VENETO, Ordinis Ieſuatorum S. HIERONY MI, in Veneta Prouincia Definitore Prouinciali. AD ILLVSTRISSIMOS, ET SAPIENTISSIMOS SENATVS BONONIENSIS QVINQVAGINTA VIROS.
[3.] VENETIIS, MD CLIX. Apud Ioannem La Noù. SVPERIORVM PERMISSV.
[4.] Illuſtriſſimis, & Sapientiſſimis BONONIENSIS SENATVS QVINQVAGINTA VIRIS Dominis Colendiſſimis. F. STEPHANVS ANGELI VENETVS Ord. leſuatorum S. Hieronymi, ac in Prouincia Veneta Prouincialis Definitor P.P.P.
[5.] LECTORI BENEVOLO.
[6.] Noi Reformatori dello Studio di Padoa.
[7.] MISCELLANEVM HYPERBOLICVM, PARABOLICVMQVE.
[8.] PROPOSITIO PRIMA.
[9.] PROPOSITIO II.
[10.] PROPOSITIO III.
[11.] PROPOSITIO IV.
[12.] SCHOLIVM I.
[13.] SCHOLIVM II.
[14.] PROPOSITIO V.
[15.] PROPOSITIO VI.
[16.] SCHOLIV M.
[17.] PROPOSITIO VII.
[18.] PROPOSITIO VIII.
[19.] PROPOSITIO IX.
[20.] PROPOSITIO X.
[21.] SCHOLIVM I.
[22.] SCHOLIVM II.
[23.] SCHOLIVM III.
[24.] PROPOSITIO XI.
[25.] PROPOSITIO XII.
[26.] SCHOLIVM.
[27.] PROPOSITIO XIII.
[28.] SCHOLIV M.
[29.] PROPOSITIO XIV.
[30.] SCHOLIV M.
< >
page |< < (91) of 232 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div86" type="section" level="1" n="59">
          <p>
            <s xml:id="echoid-s1633" xml:space="preserve">
              <pb o="91" file="0103" n="103"/>
              <figure xlink:label="fig-0103-01" xlink:href="fig-0103-01a" number="43">
                <image file="0103-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/PVNDER1Y/figures/0103-01"/>
              </figure>
            quadratum B G; </s>
            <s xml:id="echoid-s1634" xml:space="preserve">& </s>
            <s xml:id="echoid-s1635" xml:space="preserve">vt rectangulum A E C, hoc eſt
              <lb/>
            rectangulum H P k, ad rectangulum M R V, ſic
              <lb/>
            armilia circularis H P k, ad armillam circularem
              <lb/>
            M R V: </s>
            <s xml:id="echoid-s1636" xml:space="preserve">ergo vt armilla circularis H P k, ad armil-
              <lb/>
            lam circularem M R V, ſic quadratum D B, ad
              <lb/>
            quadratum B G. </s>
            <s xml:id="echoid-s1637" xml:space="preserve">Sed ex natura parabolæ quadrati-
              <lb/>
            cæ, eſt etiam vt quadratum D B, ad quadratum
              <lb/>
            B G, ſic D C, ſeù K G, ad G S. </s>
            <s xml:id="echoid-s1638" xml:space="preserve">Ergo & </s>
            <s xml:id="echoid-s1639" xml:space="preserve">vt ar-
              <lb/>
            milla H P k, ad armillam M R V, ſic k G, ad G S.
              <lb/>
            </s>
            <s xml:id="echoid-s1640" xml:space="preserve">Cum verò punctum G, ſumptum ſit ad libitum; </s>
            <s xml:id="echoid-s1641" xml:space="preserve">er-
              <lb/>
            go vt omnes armillæ tubi cylindrici Q E L C, pa-
              <lb/>
            rallelæ armillæ A E C, ad omnes armillas differen-
              <lb/>
            tiæ conoideorum, parallelas A E C, ſic omnes li-
              <lb/>
            meæ parallelogrammi D O, parallelæ D C, ad </s>
          </p>
        </div>
      </text>
    </echo>