Marci of Kronland, Johannes Marcus
,
De proportione motus, seu regula sphygmica ad celeritatem et tarditatem pulsuum
,
1639
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 129
>
101
102
103
104
105
106
107
108
109
110
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 129
>
page
|<
<
of 129
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
id
="
N10308
">
<
subchap1
id
="
N13B65
">
<
p
id
="
N13B81
"
type
="
main
">
<
s
id
="
N13C8E
">
<
pb
xlink:href
="
062/01/103.jpg
"/>
nationis, erit eadem linea
<
emph
type
="
italics
"/>
eg
<
emph.end
type
="
italics
"/>
motus mixti. </
s
>
<
s
id
="
N13CC1
">Quia ergo
<
lb
/>
mobile mouetur ad motum ſui centri, erit motus ex
<
emph
type
="
italics
"/>
d
<
emph.end
type
="
italics
"/>
<
lb
/>
reflexus per lineam parallelam illi lineæ, quæ cum lineà
<
lb
/>
perpendiculari ad contactum angulum conſtituit in
<
lb
/>
centro, cujus ſinus eſt æqualis interuallo inter centrum
<
lb
/>
grauitatis & lineam hypomochlij. </
s
>
</
p
>
</
subchap1
>
<
subchap1
id
="
N13CD3
">
<
p
id
="
N13CD4
"
type
="
main
">
<
s
id
="
N13CD6
">
<
emph
type
="
center
"/>
Propoſitio XXXX.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
id
="
N13CDD
"
type
="
main
">
<
s
id
="
N13CDF
">
<
emph
type
="
italics
"/>
Anguli incidentiæ & reflexionis ſunt inter ſe æquales.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
id
="
N13CE6
"
type
="
main
">
<
s
id
="
N13CE8
">QVia enim duo latera
<
emph
type
="
italics
"/>
eh.bg
<
emph.end
type
="
italics
"/>
trianguli
<
emph
type
="
italics
"/>
ehg
<
emph.end
type
="
italics
"/>
æqualia
<
lb
/>
ſunt duobus lateribus
<
emph
type
="
italics
"/>
ef. fd
<
emph.end
type
="
italics
"/>
trianguli
<
emph
type
="
italics
"/>
efd,
<
emph.end
type
="
italics
"/>
& angu
<
lb
/>
lus, qui adjacet uni æqualium laterum, rectus, erunt tri
<
lb
/>
angula æqualia, & angulus
<
emph
type
="
italics
"/>
fde
<
emph.end
type
="
italics
"/>
angulo
<
emph
type
="
italics
"/>
heg
<
emph.end
type
="
italics
"/>
æqualis: eſt
<
lb
/>
autem angulo
<
emph
type
="
italics
"/>
heg
<
emph.end
type
="
italics
"/>
æqualis angulus
<
emph
type
="
italics
"/>
edi
<
emph.end
type
="
italics
"/>
ob parallelas
<
emph
type
="
italics
"/>
eg.
<
lb
/>
di
<
emph.end
type
="
italics
"/>
; idem ergo angulus
<
emph
type
="
italics
"/>
edi
<
emph.end
type
="
italics
"/>
eſt æqualis angulo
<
emph
type
="
italics
"/>
fde:
<
emph.end
type
="
italics
"/>
ſunt
<
lb
/>
verò duo
<
expan
abbr
="
quoq́
">quoque</
expan
>
; anguli
<
emph
type
="
italics
"/>
a.de.bde
<
emph.end
type
="
italics
"/>
inter le æquales, nimi
<
lb
/>
rum recti; ablatis ergo duobus angulis
<
emph
type
="
italics
"/>
fde.edi
<
emph.end
type
="
italics
"/>
æquali
<
lb
/>
bus, erunt anguli reliqui
<
emph
type
="
italics
"/>
adf.bdi,
<
emph.end
type
="
italics
"/>
anguli nimirum inci
<
lb
/>
dentiæ & reflexionis inter ſe æquales. </
s
>
<
s
id
="
N13D55
">Priuſquam de mo
<
lb
/>
tu reflexo finiamus, unum
<
expan
abbr
="
atq́
">atque</
expan
>
; alterum Problema pro
<
lb
/>
corollario adducemus, quorum ſolutio magis difficilis
<
lb
/>
habetur, ex ijs autem, quæ hactenus ſunt demonſtrata,
<
lb
/>
facilè diſſoluuntur. </
s
>
<
s
id
="
N13D64
">Sit ergo </
s
>
</
p
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>