DelMonte, Guidubaldo, In duos Archimedis aequeponderantium libros Paraphrasis : scholijs illustrata

Table of figures

< >
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
< >
page |< < of 207 > >|
1
ex 4.ſexti
11.quinti.
16.quinti.
64[Figure 64]
IDEM ALITER.
Sit triangulum ABC, ducaturquè AD ab angulo A ad dimidiam
baſim BC. Dico in linea AD centrum eſſe grauitatis trianguli ABC.
N on ſit autem, ſed ſi fieri poteſt; ſit H. iunganturquè AH HB HC, &
ED DF FE ad dimidias BA BC AC ducantur, ſecetquè EF ip­
ſam AD in M. & ipſi AH æquidistantes ducantur EK FL. &

iungantur KL LD Dk DH; ſecetquè DH ipſam KL in N.
iungaturquè MN. Quoniam igitur triangulum ABC ſimile est triam
gulo DFC, cùm ſit BA ipſi FD æquidistans; ſiquidem ſunt late­
ra CA CB bifariam diuiſa, ideoquè ſit CF ad FA, vt CD
ad DB. trianguliquè ABC centrum grauitatis est punctum H; &
trianguli FDC centrum grauitatis erit punctum L. puncta enim HB
intra vtrumquè triangulum ſunt ſimiliter poſita.
etenim ad homologa
latera angulos efficiunt æquales.
hoc enim perſpicuum. est cùm enim
ſint triangulorum ABC DFC homologa latera AC FC,
AB FD, BC DC, ſintquè AH FL æquidiſtantes; erit an­
gulus LFC angulo HAC ęqualis.
ſed angulus CFD eſt ipſi

Text layer

  • Dictionary
  • Places

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index