Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 14
[out of range]
>
[Note]
Page: 41
[Note]
Page: 41
[Note]
Page: 41
[Note]
Page: 43
[Note]
Page: 47
[Note]
Page: 49
[Note]
Page: 52
[Note]
Page: 53
[Note]
Page: 54
[Note]
Page: 55
[Note]
Page: 55
[Note]
Page: 55
[Note]
Page: 55
[Note]
Page: 56
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 63
[Note]
Page: 63
[Note]
Page: 63
[Note]
Page: 66
[Note]
Page: 66
[Note]
Page: 66
[Note]
Page: 66
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
<
1 - 14
[out of range]
>
page
|<
<
(84)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div266
"
type
="
section
"
level
="
1
"
n
="
120
">
<
pb
o
="
84
"
file
="
0108
"
n
="
108
"
rhead
="
"/>
</
div
>
<
div
xml:id
="
echoid-div267
"
type
="
section
"
level
="
1
"
n
="
121
">
<
head
xml:id
="
echoid-head126
"
xml:space
="
preserve
">THEOR. XXVI. PROP. XXXXVIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2804
"
xml:space
="
preserve
">Similes Hyperbolæ per diuerſos vertices ſimul adſcriptæ habent
<
lb
/>
aſymptotos parallelas, & </
s
>
<
s
xml:id
="
echoid-s2805
"
xml:space
="
preserve
">quando centrum interioris cadat vltra
<
lb
/>
centrum exterioris, tunc huius aſymptotos interiorem Hyperbolen
<
lb
/>
ſecabit, ac ipſæ Hyperbolæ neceſſariò ſe mutuò ſecabunt. </
s
>
<
s
xml:id
="
echoid-s2806
"
xml:space
="
preserve
">Cum
<
lb
/>
verò centrum interioris idem ſit cum centro exterioris, tunc vnius
<
lb
/>
aſymptotos erit aſymptotos alterius; </
s
>
<
s
xml:id
="
echoid-s2807
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2808
"
xml:space
="
preserve
">ſectiones erunt ſimul nun-
<
lb
/>
quam coeuntes. </
s
>
<
s
xml:id
="
echoid-s2809
"
xml:space
="
preserve
">Et ſi interioris centrum cadat infra centrum ex-
<
lb
/>
terioris, tunc eædem ſectiones erunt inter ſe nunquam coeuntes; </
s
>
<
s
xml:id
="
echoid-s2810
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2811
"
xml:space
="
preserve
">
<
lb
/>
aſymptotos inſcriptæ ſecabit Hyperbolen circumſcriptam.</
s
>
<
s
xml:id
="
echoid-s2812
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2813
"
xml:space
="
preserve
">SInt, vt in vtraque figura huius propoſitionis, duæ ſimiles Hyperbolæ
<
lb
/>
ABC, DEF per diuerſos vertices B, E ſimul adſcriptæ, quarum centra
<
lb
/>
ſint G, H, & </
s
>
<
s
xml:id
="
echoid-s2814
"
xml:space
="
preserve
">ſectionis ABC aſymptoti ſint GI, GO; </
s
>
<
s
xml:id
="
echoid-s2815
"
xml:space
="
preserve
">ſectionis verò DEF ſint
<
lb
/>
HM, HR; </
s
>
<
s
xml:id
="
echoid-s2816
"
xml:space
="
preserve
">Dico has aſymptotos eſſe inter ſe æquidiſtantes.</
s
>
<
s
xml:id
="
echoid-s2817
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2818
"
xml:space
="
preserve
">Nam in ſimilibus Hyperbolis ABC, DEF, anguli IGE, MHE, ab earum
<
lb
/>
aſymptotis, & </
s
>
<
s
xml:id
="
echoid-s2819
"
xml:space
="
preserve
">diametris ad homologas partes facti ſunt æquales,
<
note
symbol
="
a
"
position
="
left
"
xlink:label
="
note-0108-01
"
xlink:href
="
note-0108-01a
"
xml:space
="
preserve
">Coroll.
<
lb
/>
40. huius.</
note
>
alterni, quare ipſæ aſymptoti inter ſe æquidiſtabunt. </
s
>
<
s
xml:id
="
echoid-s2820
"
xml:space
="
preserve
">Quod primò, &</
s
>
<
s
xml:id
="
echoid-s2821
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s2822
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2823
"
xml:space
="
preserve
">Iam in hac prima figura, (in
<
lb
/>
<
figure
xlink:label
="
fig-0108-01
"
xlink:href
="
fig-0108-01a
"
number
="
75
">
<
image
file
="
0108-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0108-01
"/>
</
figure
>
qua centrum H interioris DEF
<
lb
/>
remotius eſt à verticibus B, E,
<
lb
/>
quàm ſit centrum G exterioris
<
lb
/>
Hyperbolæ ABC) cum ſint HM,
<
lb
/>
HR aſymptoti Hyperbolæ DEF,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s2824
"
xml:space
="
preserve
">in loco ab eis, & </
s
>
<
s
xml:id
="
echoid-s2825
"
xml:space
="
preserve
">ſectione ter-
<
lb
/>
minato ducta ſit GI alteri aſym-
<
lb
/>
ptoton
<
unsure
/>
HM æquidiſtans, ipſa
<
lb
/>
omnino ſectionem DEF ſecabit.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2826
"
xml:space
="
preserve
">Quod ſecundò, &</
s
>
<
s
xml:id
="
echoid-s2827
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s2828
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2829
"
xml:space
="
preserve
">Sed ipſa GI, cum ſit aſympto-
<
lb
/>
tos ſectionis ABC, tota cadit ex-
<
lb
/>
tra ipſam BA, quare occurſus
<
lb
/>
prædictæ aſymptoton GI cum ſe-
<
lb
/>
ctione ED, erit extra ſectionem
<
lb
/>
BA, vnde ipſa interior ſectio ED
<
lb
/>
neceſſariò ſecabit priùs exterio-
<
lb
/>
rem BA. </
s
>
<
s
xml:id
="
echoid-s2830
"
xml:space
="
preserve
">Quod tertiò, &</
s
>
<
s
xml:id
="
echoid-s2831
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s2832
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2833
"
xml:space
="
preserve
">Ad pleniorem autem doctrinam, ſi quæratur, quo nam in puncto huiuſ-
<
lb
/>
modi Hyperbolæ ſe mutuò ſecent, ita id conſequetur.</
s
>
<
s
xml:id
="
echoid-s2834
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2835
"
xml:space
="
preserve
">Sumpta enim GS æquali GB, erit tota BS tranſuerſum exterioris ABC;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2836
"
xml:space
="
preserve
">item ſumpta HT æquali HE, erit tota TE tranſuerſum interioris DEF.</
s
>
<
s
xml:id
="
echoid-s2837
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2838
"
xml:space
="
preserve
">Iam, vel H centrum interioris cadit in ipſo puncto S; </
s
>
<
s
xml:id
="
echoid-s2839
"
xml:space
="
preserve
">vel ſupra inter S, & </
s
>
<
s
xml:id
="
echoid-s2840
"
xml:space
="
preserve
">
<
lb
/>
T, vel infra inter G, &</
s
>
<
s
xml:id
="
echoid-s2841
"
xml:space
="
preserve
">S.</
s
>
<
s
xml:id
="
echoid-s2842
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>