<s xml:space="preserve">
sit æquationis forma data:
<lb/>
<math>
<mstyle>
<mi>x</mi>
<mi>x</mi>
<mi>x</mi>
<mi>z</mi>
<mo>=</mo>
<mo>+</mo>
<mi>f</mi>
<mi>f</mi>
<mi>g</mi>
<mi>a</mi>
<mo>+</mo>
<mi>c</mi>
<mi>d</mi>
<mi>a</mi>
<mi>a</mi>
<mo>+</mo>
<mn>4</mn>
<mi>r</mi>
<mi>a</mi>
<mi>a</mi>
<mi>a</mi>
<mo>-</mo>
<mi>a</mi>
<mi>a</mi>
<mi>a</mi>
<mi>a</mi>
</mstyle>
</math>
.
<lb/>
quæ quatuor radicum potis est: oportet invenire
<lb/>
æquationem sub eadem froma
<emph style="st">quæ</emph>
<emph style="super">ut</emph>
habeat
<emph style="super">radices</emph>
duas.
<lb/>
Quoniam potestas est negativa non feret unicam vel tres
<lb/>
[
<emph style="bf">Translation: </emph>
Let the equation be in the given form
<lb/>
<math>
<mstyle>
<mi>x</mi>
<mi>x</mi>
<mi>x</mi>
<mi>z</mi>
<mo>=</mo>
<mo>+</mo>
<mi>f</mi>
<mi>f</mi>
<mi>g</mi>
<mi>a</mi>
<mo>+</mo>
<mi>c</mi>
<mi>d</mi>
<mi>a</mi>
<mi>a</mi>
<mo>+</mo>
<mn>4</mn>
<mi>r</mi>
<mi>a</mi>
<mi>a</mi>
<mi>a</mi>
<mo>-</mo>
<mi>a</mi>
<mi>a</mi>
<mi>a</mi>
<mi>a</mi>
</mstyle>
</math>
.
<lb/>
which may have four roots;
it is required to find an equation of the same form that has only two roots.
Because the highest power is negative, if cannot have one or ]</s>