Viviani, Vincenzo, De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei

Page concordance

< >
Scan Original
141 117
142 118
143 119
144 120
145 121
146 122
147 123
148 124
149 125
150 126
151 127
152 128
153 129
154 130
155 131
156 132
157 133
158 134
159 135
160 136
161 137
162 138
163 139
164 140
165 141
166 142
167 143
168 144
169 145
170 146
< >
page |< < (94) of 347 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div296" type="section" level="1" n="130">
          <p>
            <s xml:id="echoid-s3160" xml:space="preserve">
              <pb o="94" file="0118" n="118" rhead=""/>
            nor ſit ſemi-tranſuerſo DB: </s>
            <s xml:id="echoid-s3161" xml:space="preserve">(ſi enim datum punctum eſſet in angulis, qui
              <lb/>
            deinceps ſunt, recta linea per ipſum datum punctum, & </s>
            <s xml:id="echoid-s3162" xml:space="preserve">centrum ſectionis
              <lb/>
            ducta non eſſet eius diameter, cum nunquam ſectioni occurreret, ac
              <note symbol="a" position="left" xlink:label="note-0118-01" xlink:href="note-0118-01a" xml:space="preserve">Monit.
                <lb/>
              poſt 11. h.</note>
            problema, iuxta quintam ſecundarum definitionum inſolubile eſſet: </s>
            <s xml:id="echoid-s3163" xml:space="preserve">& </s>
            <s xml:id="echoid-s3164" xml:space="preserve">cum
              <lb/>
            fuerit in angulo ad verticem, vt in ſecunda, niſi diſtantia ED minor ſit ſemi-
              <lb/>
            tranſuerſo DB, Hyperbole ad regulam datæ adſcribi minimè poſſet, vt ſatis
              <lb/>
            patet) oportet per E _MINIMAM_ Hyperbolen circumſcribere, cuius regula
              <lb/>
            eadem ſit cum regula datæ ſectionis.</s>
            <s xml:id="echoid-s3165" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3166" xml:space="preserve">Iungatur ED, & </s>
            <s xml:id="echoid-s3167" xml:space="preserve">ad partes ſectionis producatur donec ei occurrat in B,
              <lb/>
            ſumptaq; </s>
            <s xml:id="echoid-s3168" xml:space="preserve">in directum DH æquali DB, erit HB tranſuerſum ſectionis
              <note symbol="b" position="left" xlink:label="note-0118-02" xlink:href="note-0118-02a" xml:space="preserve">47. pri-
                <lb/>
              mi conic.</note>
            cuius vertex B: </s>
            <s xml:id="echoid-s3169" xml:space="preserve">ſit ergo BI eius rectum latus, & </s>
            <s xml:id="echoid-s3170" xml:space="preserve">regula HI; </s>
            <s xml:id="echoid-s3171" xml:space="preserve">ſitque EK æqui-
              <lb/>
            diſtans BI, & </s>
            <s xml:id="echoid-s3172" xml:space="preserve">per verticem B, cum tranſuerſo EH, & </s>
            <s xml:id="echoid-s3173" xml:space="preserve">recto EK, ſiue ad ean-
              <lb/>
            dem regulam HI adſcribatur Hyperbole LEM: </s>
            <s xml:id="echoid-s3174" xml:space="preserve">patet ipſam datæ ABC eſſe
              <lb/>
            inſcriptam, cum ſimul ſint nun quam coeuntes.</s>
            <s xml:id="echoid-s3175" xml:space="preserve"/>
          </p>
          <note symbol="c" position="left" xml:space="preserve">45. h.</note>
          <figure number="83">
            <image file="0118-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0118-01"/>
          </figure>
          <p>
            <s xml:id="echoid-s3176" xml:space="preserve">Dico ampliùs ipſam LEM eſſe _MINIMAM_ quæſitam. </s>
            <s xml:id="echoid-s3177" xml:space="preserve">Quoniam quęlibet
              <lb/>
            alia adſcripta per verticem E, cum eodem verſo HE, ſed cum recto, quod
              <lb/>
            excedat EK, maior eſt ipſa LEM; </s>
            <s xml:id="echoid-s3178" xml:space="preserve">quæ verò cum recto EN, quod minus
              <note symbol="d" position="left" xlink:label="note-0118-04" xlink:href="note-0118-04a" xml:space="preserve">2. Co-
                <lb/>
              roll. 19. h.</note>
            EK, qualis OEQ, eſt quidem minor eadem LEM, ſed omnino ſecat
              <note symbol="e" position="left" xlink:label="note-0118-05" xlink:href="note-0118-05a" xml:space="preserve">ibidem.</note>
            ABC. </s>
            <s xml:id="echoid-s3179" xml:space="preserve">Nam ad productam regulam HN, ſecan@ BI in R adſcribatur per B
              <lb/>
            Hyperbole SBT; </s>
            <s xml:id="echoid-s3180" xml:space="preserve">hæc tota cadet intra ABC, eruntque SBT, OEQ duæ
              <note symbol="f" position="left" xlink:label="note-0118-06" xlink:href="note-0118-06a" xml:space="preserve">ibidem.</note>
            miles Hyperbolæ per diuerſos vertices adſcriptæ ad eandem regulam HR,
              <lb/>
            eſtque ABC ipſi SBT, per eundem verticem, & </s>
            <s xml:id="echoid-s3181" xml:space="preserve">cum maiori recto latere BI
              <lb/>
            adſcripta, quare per præce dentem ſectiones ABC, OEQ ſe mutuò
              <note symbol="g" position="left" xlink:label="note-0118-07" xlink:href="note-0118-07a" xml:space="preserve">52. h.</note>
            bunt: </s>
            <s xml:id="echoid-s3182" xml:space="preserve">Vnde Hyperbole LEM eſt _MINIMA_ circumſcripta quæſita. </s>
            <s xml:id="echoid-s3183" xml:space="preserve">Quod
              <lb/>
            faciendum, & </s>
            <s xml:id="echoid-s3184" xml:space="preserve">demonſtrandum erat.</s>
            <s xml:id="echoid-s3185" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div300" type="section" level="1" n="131">
          <head xml:id="echoid-head136" xml:space="preserve">ALITER.</head>
          <p>
            <s xml:id="echoid-s3186" xml:space="preserve">SEcetur EH bifariam in X: </s>
            <s xml:id="echoid-s3187" xml:space="preserve">erit X centrum vtriuſque LEM, OEQ: </s>
            <s xml:id="echoid-s3188" xml:space="preserve">ſi ergo
              <lb/>
            ex centris X, D, ducantur XY, XZ, DF ſectionum LEM, OEQ, ABC
              <lb/>
            aſymptoti, hoc eſt XY circumſcriptæ LEM; </s>
            <s xml:id="echoid-s3189" xml:space="preserve">XZ inſcriptæ OEQ, quæ infra
              <lb/>
            XY cadet; </s>
            <s xml:id="echoid-s3190" xml:space="preserve">& </s>
            <s xml:id="echoid-s3191" xml:space="preserve">DF ſectionis ABC, quæ ipſi XY æquidiſtabit; </s>
            <s xml:id="echoid-s3192" xml:space="preserve">cum XZ
              <note symbol="h" position="left" xlink:label="note-0118-08" xlink:href="note-0118-08a" xml:space="preserve">Ex vlti-
                <lb/>
              ma partre
                <lb/>
              37. huius.</note>
              <handwritten xlink:label="hd-0118-2" xlink:href="hd-0118-2a" number="11"/>
            </s>
          </p>
        </div>
      </text>
    </echo>