1tres anguli vnius triangulorum ſunt æquales tribus alterius prop.
32. lib. 1. & anguli qui ad A æquales ex hypotheſi, anguli ad ba
ſim duo duobus ſunt æquales ax. 3. & quia A D C & A C D
ſunt ad baſim Iſoſcelis, ij inter ſe erunt æquales prop. 5. lib. 1. & per
eandem anguli A B E & A E B. Sicque A E B dimidius
cum ſit horum duorum, angulo A C D etiam dimidio æqualium æqua
lis erit ax. 6. & per idem reliquus reliquo. Sunt igitur A B E &
A D C triangula æquiangula, proinde circum æquales angulos la
tera habebunt proportionalia. prop. 4. lib. 6. ideo vt A D ad D C:
ſic A B ad B E: & vicißim vt A D ad A B: ſic D C ba
ſis ad baſim B E prop. 16. lib. 5. Eſt autem maius A D ipſo A B
ex hypotheſi. Ergo Baſis D C maior erit ipſa B E. Igitur ſi duo
Iſoſcelia æqualia angulis, inæqualia cruribus fuerint &c. quod
fuit demonstrandum.
32. lib. 1. & anguli qui ad A æquales ex hypotheſi, anguli ad ba
ſim duo duobus ſunt æquales ax. 3. & quia A D C & A C D
ſunt ad baſim Iſoſcelis, ij inter ſe erunt æquales prop. 5. lib. 1. & per
eandem anguli A B E & A E B. Sicque A E B dimidius
cum ſit horum duorum, angulo A C D etiam dimidio æqualium æqua
lis erit ax. 6. & per idem reliquus reliquo. Sunt igitur A B E &
A D C triangula æquiangula, proinde circum æquales angulos la
tera habebunt proportionalia. prop. 4. lib. 6. ideo vt A D ad D C:
ſic A B ad B E: & vicißim vt A D ad A B: ſic D C ba
ſis ad baſim B E prop. 16. lib. 5. Eſt autem maius A D ipſo A B
ex hypotheſi. Ergo Baſis D C maior erit ipſa B E. Igitur ſi duo
Iſoſcelia æqualia angulis, inæqualia cruribus fuerint &c. quod
fuit demonstrandum.
Patet igitur ex his quod cum B C ſit vt longitudo nauis, ſi pup
pis B peruenerit ad E manente A cardine. Tunc C erit in D.
Sicque fiunt duo triangula Iſoſcelia A B E & A D C æqualia
angulis ad verticem A oppoſitis prop. 15. lib. 1. Et inæqualia cruri
bus. Nam rectæ ab A puncto Cardini reſpondente in ima parte na
uis propè puppis extremum ad extremum proræ id eſt A D, A C
longè maiores ſunt breuißimis ijs, quæ ſunt ab eodem puncto A ad ex
tremum puppis A B, A E. Peragrabit igitur prora D lineam C B
longè maiorem, cum B peragrabit B E multo minorem.
pis B peruenerit ad E manente A cardine. Tunc C erit in D.
Sicque fiunt duo triangula Iſoſcelia A B E & A D C æqualia
angulis ad verticem A oppoſitis prop. 15. lib. 1. Et inæqualia cruri
bus. Nam rectæ ab A puncto Cardini reſpondente in ima parte na
uis propè puppis extremum ad extremum proræ id eſt A D, A C
longè maiores ſunt breuißimis ijs, quæ ſunt ab eodem puncto A ad ex
tremum puppis A B, A E. Peragrabit igitur prora D lineam C B
longè maiorem, cum B peragrabit B E multo minorem.
dh=lon de\ e)k tou/tou, kai\ di' h(\n
ai)ti/an ma=llon proe/rxetai ei)s tou)nanti/on to\ ploi=on h)\ h( th=s
kw/phs pla/th: to\ au)to\ ga\r me/geqos th=| au)th=| i)sxu/i+ kinou/menon
e)n a)e/ri, ple/on h)\: e)n tw=| u(/dati pro/eisin. e)/stw ga\r h( *a
*b kw/ph, to\ de\ *g o( skalmo/s, to\ de\ *a to\ e)n tw=| ploi/w|, h(
a)rxh\ th=s kw/phs, to\ de\ *b to\ e)n th=| qala/tth|. ei) dh\ to\ *a
ou(= to\ *d metakeki/nhtai, to\ *b ou)k e)/stai ou(= to\ *e: i)/sh ga\r h( *b
*e th=| *a*d. i)/son ou)=n metakexwrhko\s e)/stai, a)ll' h)=n e)/latton.
e)/stai dh\ ou(= to\ *z [1h)\ to\ *q. a)/ra toi/nun th\n *a*b, kai\ ou)x h( to\
*g, kai\ ka/twqen.]1 e)la/ttwn ga\r h( *b*z, th=s *a*d, w(/ste kai\
h( *q*z th=s *d*q: o(/moia ga\r ta\ tri/gwna. kaqesthko\s de\
e)/stai kai\ to\ me/son, to\ e)f' ou(= *g: ei)s tou)nanti/on ga\r tw=| e)n th=|
qala/tth| a)/krw| to\ *b metaxwrei=, h(=|per to\ e)n ploi/w|
a)/kron to\ *a. mh\ e)gxw/rei de\ ou(= to\ *d. ei) mh\ metakinhqh/setai to\
ploi=on, kai\ e)kei= ou(= h( a)rxh\ th=s kw/phs metafe/retai.
ai)ti/an ma=llon proe/rxetai ei)s tou)nanti/on to\ ploi=on h)\ h( th=s
kw/phs pla/th: to\ au)to\ ga\r me/geqos th=| au)th=| i)sxu/i+ kinou/menon
e)n a)e/ri, ple/on h)\: e)n tw=| u(/dati pro/eisin. e)/stw ga\r h( *a
*b kw/ph, to\ de\ *g o( skalmo/s, to\ de\ *a to\ e)n tw=| ploi/w|, h(
a)rxh\ th=s kw/phs, to\ de\ *b to\ e)n th=| qala/tth|. ei) dh\ to\ *a
ou(= to\ *d metakeki/nhtai, to\ *b ou)k e)/stai ou(= to\ *e: i)/sh ga\r h( *b
*e th=| *a*d. i)/son ou)=n metakexwrhko\s e)/stai, a)ll' h)=n e)/latton.
e)/stai dh\ ou(= to\ *z [1h)\ to\ *q. a)/ra toi/nun th\n *a*b, kai\ ou)x h( to\
*g, kai\ ka/twqen.]1 e)la/ttwn ga\r h( *b*z, th=s *a*d, w(/ste kai\
h( *q*z th=s *d*q: o(/moia ga\r ta\ tri/gwna. kaqesthko\s de\
e)/stai kai\ to\ me/son, to\ e)f' ou(= *g: ei)s tou)nanti/on ga\r tw=| e)n th=|
qala/tth| a)/krw| to\ *b metaxwrei=, h(=|per to\ e)n ploi/w|
a)/kron to\ *a. mh\ e)gxw/rei de\ ou(= to\ *d. ei) mh\ metakinhqh/setai to\
ploi=on, kai\ e)kei= ou(= h( a)rxh\ th=s kw/phs metafe/retai.
Ex hoc autem manifeſtum
eſt, ob quam cauſam nauis
in contrarium magis pro
cedat: quam remi palmula.
Eadem enim moles eadem
vi mota per aerem plus,
quam per aquam progre
ditur. Sit enim remus a b
& ſcalmus g, & intra nauim
caput remi a palmula intra
mare b. Si itaque a tranſla
tum ſit eò, vbi eſt d: ipſum b
eſt, ob quam cauſam nauis
in contrarium magis pro
cedat: quam remi palmula.
Eadem enim moles eadem
vi mota per aerem plus,
quam per aquam progre
ditur. Sit enim remus a b
& ſcalmus g, & intra nauim
caput remi a palmula intra
mare b. Si itaque a tranſla
tum ſit eò, vbi eſt d: ipſum b