DelMonte, Guidubaldo, In duos Archimedis aequeponderantium libros Paraphrasis : scholijs illustrata

Table of figures

< >
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
< >
page |< < of 207 > >|
    <archimedes>
      <text>
        <body>
          <chap id="N10019">
            <pb xlink:href="077/01/119.jpg" pagenum="115"/>
            <p id="N14687" type="margin">
              <s id="N14689">
                <margin.target id="marg195"/>
              1.
                <emph type="italics"/>
              ſexti.
                <emph.end type="italics"/>
              </s>
            </p>
            <p id="N14692" type="main">
              <s id="N14694">Adhuc (veluti initio quo〈que〉 diximus) ſi fuerit prisma, vt
                <lb/>
              AB, cuius altera baſis ſit AC. tale verò ſit prisma, vt pl mum
                <lb/>
              AC planis CH CK &c. </s>
              <s id="N1469A">ſit erectum. </s>
              <s id="N1469C">ſit autem ipſius baſis
                <lb/>
              AC centrum grauitatis E. Dico ſi prima ſuſpendatur ex pu­
                <lb/>
                <arrow.to.target n="fig59"/>
                <lb/>
              cto E, baſim AC horizonti æquidiſtantem permanere. </s>
              <s id="N146A7">vt co
                <lb/>
              gnoſcamusea, quæ his libris pertractantur, ad praxim poſſe
                <lb/>
              reduci. </s>
              <s id="N146AD">& ne aliquid abſ〈que〉 demonſtratione confirmatum re
                <lb/>
              linquamus. </s>
              <s id="N146B1">hoc quo〈que〉 oſtendemus. </s>
              <s id="N146B3">hoc pacto. </s>
            </p>
            <figure id="id.077.01.119.1.jpg" xlink:href="077/01/119/1.jpg" number="78"/>
            <p id="N146B9" type="main">
              <s id="N146BB">Primùm quidem exijs, quæ demonſtrata ſunt, rectilineæ
                <lb/>
              figuræ AC centrum granitatis inueniatur E. eodemquè mo
                <lb/>
              do figuræ BD centrum grauitatis ſit F. Iungaturquè EF,
                <lb/>
              quæ bifariam diuidatur in G. Iam patet punctum G cen­
                <lb/>
              trum eſſe grauitatis priſmatis AB, ex octaua propoſitione Fe­
                <lb/>
              derici
                <expan abbr="Cõmandini">Commandini</expan>
              de centro grauitatis ſolidorum, & ex corol
                <lb/>
              lario quintæ propoſitionis eiuſdem libri, lineam EF late­
                <lb/>
              ribus AD CB ęquidiſtantem eſſe. </s>
              <s id="N146CF">quoniam
                <expan abbr="autẽ">autem</expan>
              plana CH
                <lb/>
              CK ad rectos ſuntangulos plano AC, erit CB eorum
                <arrow.to.target n="marg196"/>
                <lb/>
              nisſectio eidem plano AC perpendicularis. </s>
              <s id="N146DC">acpropterea EF
                <lb/>
              ipſi CB æquidiſtans plano AC perpendicularis exiſtit. </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>