Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota

Table of contents

< >
[151.] Finis Primi Libri.
[152.] CAVALER II LIBER SECVNDVS.
[153.] DIFINITIONES. I.
[154.] COROLLARIVM.
[155.] II.
[156.] COROLLARIVM.
[157.] III.
[158.] COROLLARIVM.
[159.] IV.
[161.] COROLLARIVM.
[162.] VI.
[163.] COROLLARIVM.
[164.] VII.
[165.] A. VIII.
[170.] APPENDIX. Pro antecedentium Definitionum explicatione.
[171.] POSTVLATA I.
[172.] II.
[173.] THEOREMA I. PROPOS. I.
[174.] SCHOLIVM.
[175.] THEOREMA II. PROPOS. II.
[176.] COROLLARIV M.
[177.] THEOREMA III. PROPOS. III.
[178.] COROLLARIVM.
[179.] THEOREMA IV. PROPOS. IV.
[180.] COROLLARIVM.
< >
page |< < (102) of 569 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div246" type="section" level="1" n="160">
          <pb o="102" file="0122" n="122" rhead="GEOMETRIE"/>
        </div>
        <div xml:id="echoid-div247" type="section" level="1" n="161">
          <head xml:id="echoid-head174" xml:space="preserve">COROLLARIVM.</head>
          <p style="it">
            <s xml:id="echoid-s2473" xml:space="preserve">_H_Inc liquet cuilibet abſciſſæ in proximis definitionibus propoſitæ li-
              <lb/>
            neæ reſpondere vnam ex reſiduis, ita vt tot ſint illæ, quæ dicun-
              <lb/>
            tur reſiduæ omnium abſciſſarum propoſitæ lineæ quot illæ, quæ dicun-
              <lb/>
            tur eiuſdem omnes abſciſſæ, ſiue recti, ſiue eiuſdem obliqui tranſitus, nam
              <lb/>
            reſiduæ omnium abſciſſarum propoſitælineæ interiacent inter reliquum
              <lb/>
            extremum eiuſdem punctum, & </s>
            <s xml:id="echoid-s2474" xml:space="preserve">eadem illa puncta, inter quæ, & </s>
            <s xml:id="echoid-s2475" xml:space="preserve">ex-
              <lb/>
            tremum primò dictum, interiacent omnes abſciſſæ.</s>
            <s xml:id="echoid-s2476" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div248" type="section" level="1" n="162">
          <head xml:id="echoid-head175" xml:space="preserve">VI.</head>
          <p>
            <s xml:id="echoid-s2477" xml:space="preserve">SI pro qualibet earum, quæ dicuntur omnes abſciſſæ pro-
              <lb/>
            poſitæ rectæ lineæ, ipſa propoſita linea, ſiue eidem æ-
              <lb/>
            qualis, ſemel aſſumpta intelligatur, iſtæ ſimul collectæ di-
              <lb/>
            centur: </s>
            <s xml:id="echoid-s2478" xml:space="preserve">Maximæ omnium abſciſſarum propoſitæ lineæ, vel
              <lb/>
            ſubintelligentur ſemper eſſe omnium, etiam ſi dicerentur ſo-
              <lb/>
            lummodò: </s>
            <s xml:id="echoid-s2479" xml:space="preserve">Maximæ abſciſſarum.</s>
            <s xml:id="echoid-s2480" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div249" type="section" level="1" n="163">
          <head xml:id="echoid-head176" xml:space="preserve">COROLLARIVM.</head>
          <p style="it">
            <s xml:id="echoid-s2481" xml:space="preserve">_E_T quia omnes abſciſſæ tot ſunt, quot omnes reſidue, maximè verò
              <lb/>
            omnium abſciſſtrum tot ſunt, quot omnes abſciſſæ, nam cuilibet
              <lb/>
            abſciſſæ reſpondet vna maximarum, ideò maximæ omnium abſciſſarum
              <lb/>
            propoſitæ lineæ tot erunt, quot etiam reſiduæ omnium abſciſſarum, quot-
              <lb/>
            cumque ſint omnes abſciſſæ, vel reſiduæ : </s>
            <s xml:id="echoid-s2482" xml:space="preserve">ideſt pro qualibet reſidua ha-
              <lb/>
            bebimus quoque vnam maximarum; </s>
            <s xml:id="echoid-s2483" xml:space="preserve">ijs ſemper recti, vel eiuſdem obli-
              <lb/>
            qui tranſitus aſſumptis.</s>
            <s xml:id="echoid-s2484" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div250" type="section" level="1" n="164">
          <head xml:id="echoid-head177" xml:space="preserve">VII.</head>
          <p>
            <s xml:id="echoid-s2485" xml:space="preserve">SI cuilibet omnium abſciſſarum propoſitæ rectæ lineæ ad-
              <lb/>
            iuncta intelligatur alia recta linea cuidam equalis, com-
              <lb/>
            poſitæ ex omnibus abſciſſis, & </s>
            <s xml:id="echoid-s2486" xml:space="preserve">adiunctis, ſinul colle ctæ di-
              <lb/>
            centur : </s>
            <s xml:id="echoid-s2487" xml:space="preserve">Omnes abſciſſæ propoſitæ lineæ adiuncta tali, nem-
              <lb/>
            pè adiuncta illa, cui, quę adiunguntur, ſunt ęquales. </s>
            <s xml:id="echoid-s2488" xml:space="preserve">Sive-
              <lb/>
            rò fieret hęc adiunctio reſiduis, vel maximis omnium abſciſ-
              <lb/>
            ſarum, pariter dicerentur : </s>
            <s xml:id="echoid-s2489" xml:space="preserve">Reſiduæ, vel Maximæ omnium
              <lb/>
            abſciſſarum adiuncta eadem; </s>
            <s xml:id="echoid-s2490" xml:space="preserve">rectiſemper, veleiuſdem ob-
              <lb/>
            liqui tranſitus.</s>
            <s xml:id="echoid-s2491" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>