DelMonte, Guidubaldo
,
In duos Archimedis aequeponderantium libros Paraphrasis : scholijs illustrata
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 128
>
[Figure 121]
Page: 193
[Figure 122]
Page: 193
[Figure 123]
Page: 194
[Figure 124]
Page: 197
[Figure 125]
Page: 205
[Figure 126]
Page: 205
[Figure 127]
Page: 205
[Figure 128]
Page: 205
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 128
>
page
|<
<
of 207
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
id
="
N10019
">
<
pb
xlink:href
="
077/01/123.jpg
"
pagenum
="
119
"/>
<
p
id
="
N1482A
"
type
="
margin
">
<
s
id
="
N1482C
">
<
margin.target
id
="
marg198
"/>
3.
<
emph
type
="
italics
"/>
primi co
<
lb
/>
mcorum A
<
lb
/>
pol.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
id
="
N14839
"
type
="
margin
">
<
s
id
="
N1483B
">
<
margin.target
id
="
marg199
"/>
21.
<
emph
type
="
italics
"/>
primi.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
figure
id
="
id.077.01.123.1.jpg
"
xlink:href
="
077/01/123/1.jpg
"
number
="
79
"/>
<
figure
id
="
id.077.01.123.2.jpg
"
xlink:href
="
077/01/123/2.jpg
"
number
="
80
"/>
<
figure
id
="
id.077.01.123.3.jpg
"
xlink:href
="
077/01/123/3.jpg
"
number
="
81
"/>
<
p
id
="
N14850
"
type
="
main
">
<
s
id
="
N14852
">Si verò conus
<
lb
/>
<
arrow.to.target
n
="
fig63
"/>
<
lb
/>
ABC fuerit obtu
<
lb
/>
ſiangulus, ſitquè
<
lb
/>
triangulum per
<
lb
/>
axem ABC,
<
expan
abbr
="
eo-dẽ
">eo
<
lb
/>
dem</
expan
>
modoà quo
<
lb
/>
uis puncto D, du
<
lb
/>
cta DE ad re
<
lb
/>
ctos angulos ipſi
<
lb
/>
AC, acper DE
<
lb
/>
ducto plano ad
<
lb
/>
planum ABC erecto, quod conum ſecet, vt FDG; erit FDG
<
lb
/>
obtuſianguli coni ſectio, quæ vnà cum recta FG vocatur por
<
lb
/>
tio recta linea, obtuſianguliquè coni ſectione contenta. </
s
>
</
p
>
<
figure
id
="
id.077.01.123.4.jpg
"
xlink:href
="
077/01/123/4.jpg
"
number
="
82
"/>
<
p
id
="
N1487B
"
type
="
main
">
<
s
id
="
N1487D
">Similiter
<
expan
abbr
="
exiſtẽte
">exiſtente</
expan
>
co
<
lb
/>
<
arrow.to.target
n
="
fig64
"/>
<
lb
/>
no acutiangulo ABC,
<
lb
/>
cuius triangulum per a
<
lb
/>
xem ſit ABC. & à
<
expan
abbr
="
pũcto
">puncto</
expan
>
<
lb
/>
D ducta ſit DE perpen
<
lb
/>
dicularis ipſi AC, du
<
lb
/>
ctoquè plano per DE ad
<
lb
/>
planum ABC erecto, e
<
lb
/>
rit DFEG acutianguli
<
lb
/>
coni ſectio. </
s
>
</
p
>
<
figure
id
="
id.077.01.123.5.jpg
"
xlink:href
="
077/01/123/5.jpg
"
number
="
83
"/>
<
p
id
="
N148A2
"
type
="
main
">
<
s
id
="
N148A4
">Apollonius au-
<
lb
/>
tem Pergęus, qui ab
<
lb
/>
ſolutiſſima commenta
<
lb
/>
ria de conicis ſcripſit,
<
lb
/>
huiuſmodi conos omnesvocauit rectos; ad differentiam coni
<
lb
/>
ſcaleni. </
s
>
<
s
id
="
N148B0
">coni enim rectiaxes habent baſibus erectos. </
s
>
<
s
id
="
N148B2
">ſcaleni ve
<
lb
/>
rò nequaquam. </
s
>
<
s
id
="
N148B6
">& in ſcalenis latera triangulorum per axem
<
lb
/>
non ſunt ſemper æqualia. </
s
>
<
s
id
="
N148BA
">quod ſemper conis rectis contingit. </
s
>
</
p
>
<
p
id
="
N148BC
"
type
="
main
">
<
s
id
="
N148BE
">Preterea ſectionem rectanguli coni parabolen nominauit;
<
lb
/>
obtuſianguli verò coni ſectionem hyperbolen; ſectionem au
<
lb
/>
tem acutianguli coni ellipſim nuncupauit. </
s
>
<
s
id
="
N148C4
">& in vnoquo〈que〉
<
lb
/>
cono tàm recto, quàm ſcaleno has tres ineſſe ſectiones
<
expan
abbr
="
demõ
">demom</
expan
>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>