DelMonte, Guidubaldo, In duos Archimedis aequeponderantium libros Paraphrasis : scholijs illustrata

Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
< >
page |< < of 207 > >|
    <archimedes>
      <text>
        <body>
          <chap id="N10019">
            <pb xlink:href="077/01/123.jpg" pagenum="119"/>
            <p id="N1482A" type="margin">
              <s id="N1482C">
                <margin.target id="marg198"/>
              3.
                <emph type="italics"/>
              primi co
                <lb/>
              mcorum A
                <lb/>
              pol.
                <emph.end type="italics"/>
              </s>
            </p>
            <p id="N14839" type="margin">
              <s id="N1483B">
                <margin.target id="marg199"/>
              21.
                <emph type="italics"/>
              primi.
                <emph.end type="italics"/>
              </s>
            </p>
            <figure id="id.077.01.123.1.jpg" xlink:href="077/01/123/1.jpg" number="79"/>
            <figure id="id.077.01.123.2.jpg" xlink:href="077/01/123/2.jpg" number="80"/>
            <figure id="id.077.01.123.3.jpg" xlink:href="077/01/123/3.jpg" number="81"/>
            <p id="N14850" type="main">
              <s id="N14852">Si verò conus
                <lb/>
                <arrow.to.target n="fig63"/>
                <lb/>
              ABC fuerit obtu
                <lb/>
              ſiangulus, ſitquè
                <lb/>
              triangulum per
                <lb/>
              axem ABC,
                <expan abbr="eo-dẽ">eo­
                  <lb/>
                dem</expan>
              modoà quo­
                <lb/>
              uis puncto D, du
                <lb/>
              cta DE ad re­
                <lb/>
              ctos angulos ipſi
                <lb/>
              AC, acper DE
                <lb/>
              ducto plano ad
                <lb/>
              planum ABC erecto, quod conum ſecet, vt FDG; erit FDG
                <lb/>
              obtuſianguli coni ſectio, quæ vnà cum recta FG vocatur por­
                <lb/>
              tio recta linea, obtuſianguliquè coni ſectione contenta. </s>
            </p>
            <figure id="id.077.01.123.4.jpg" xlink:href="077/01/123/4.jpg" number="82"/>
            <p id="N1487B" type="main">
              <s id="N1487D">Similiter
                <expan abbr="exiſtẽte">exiſtente</expan>
              co­
                <lb/>
                <arrow.to.target n="fig64"/>
                <lb/>
              no acutiangulo ABC,
                <lb/>
              cuius triangulum per a­
                <lb/>
              xem ſit ABC. & à
                <expan abbr="pũcto">puncto</expan>
                <lb/>
              D ducta ſit DE perpen­
                <lb/>
              dicularis ipſi AC, du­
                <lb/>
              ctoquè plano per DE ad
                <lb/>
              planum ABC erecto, e­
                <lb/>
              rit DFEG acutianguli
                <lb/>
              coni ſectio. </s>
            </p>
            <figure id="id.077.01.123.5.jpg" xlink:href="077/01/123/5.jpg" number="83"/>
            <p id="N148A2" type="main">
              <s id="N148A4">Apollonius au-­
                <lb/>
              tem Pergęus, qui ab­
                <lb/>
              ſolutiſſima commenta­
                <lb/>
              ria de conicis ſcripſit,
                <lb/>
              huiuſmodi conos omnesvocauit rectos; ad differentiam coni
                <lb/>
              ſcaleni. </s>
              <s id="N148B0">coni enim rectiaxes habent baſibus erectos. </s>
              <s id="N148B2">ſcaleni ve
                <lb/>
              rò nequaquam. </s>
              <s id="N148B6">& in ſcalenis latera triangulorum per axem
                <lb/>
              non ſunt ſemper æqualia. </s>
              <s id="N148BA">quod ſemper conis rectis contingit. </s>
            </p>
            <p id="N148BC" type="main">
              <s id="N148BE">Preterea ſectionem rectanguli coni parabolen nominauit;
                <lb/>
              obtuſianguli verò coni ſectionem hyperbolen; ſectionem au
                <lb/>
              tem acutianguli coni ellipſim nuncupauit. </s>
              <s id="N148C4">& in vnoquo〈que〉
                <lb/>
              cono tàm recto, quàm ſcaleno has tres ineſſe ſectiones
                <expan abbr="demõ">demom</expan>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>