Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota

List of thumbnails

< >
151
151 (131)
152
152 (132)
153
153 (133)
154
154 (134)
155
155 (135)
156
156 (136)
157
157 (137)
158
158 (138)
159
159 (139)
160
160 (140)
< >
page |< < (106) of 569 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div256" type="section" level="1" n="170">
          <p style="it">
            <s xml:id="echoid-s2541" xml:space="preserve">
              <pb o="106" file="0126" n="126" rhead="GEOMETRIÆ"/>
            guræ, ABC, productis ſi opus ſit, idem intellige in recta, EM, cuius
              <lb/>
            omnia puncta dicuntur eiuſdem obliqui tranſitus, eius nempè, qui
              <lb/>
            in tali inclinatione fit.</s>
            <s xml:id="echoid-s2542" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s2543" xml:space="preserve">Pro intelligentia Defin. </s>
            <s xml:id="echoid-s2544" xml:space="preserve">_8._ </s>
            <s xml:id="echoid-s2545" xml:space="preserve">ſupponatur in figura plana propoſita,
              <lb/>
            ABC, vtcunque recta, BC, quæ deſcribat figuram planam, BC,
              <lb/>
              <figure xlink:label="fig-0126-01" xlink:href="fig-0126-01a" number="68">
                <image file="0126-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0126-01"/>
              </figure>
            eleuatam ſuper, ABC, ſin-
              <lb/>
            gulæ autem lineæ, quæ di-
              <lb/>
            cuntur omnes lineæ figuræ,
              <lb/>
            ABC, ſumptæ regula, B
              <lb/>
            C, recti tranſitus, ſi figu-
              <lb/>
            ra, BC, ſit erecta figuræ,
              <lb/>
            ABC, veleiuſdem obliqui
              <lb/>
            tranſitus (qui nempè in in-
              <lb/>
            clinatione deſcriptæ figuræ
              <lb/>
            ad planum, ABC, fit, ſi figura, BC, ſit inclinata ad figuram, AB
              <lb/>
            C,) deſcribere intelligantur figuras planas ſimiles ſimiliter poſitas,
              <lb/>
            & </s>
            <s xml:id="echoid-s2546" xml:space="preserve">æquidiſtantes ipſi figuræ, BC, ita vt deſcribentes ſint deſcripta-
              <lb/>
              <note position="left" xlink:label="note-0126-01" xlink:href="note-0126-01a" xml:space="preserve">_D. Defin._
                <lb/>
              _10. lib.1._</note>
            rum figurarum lineæ, vel later a bomologa, quarum figurarum ali-
              <lb/>
            quæ ſint ipſæ, BC, PF, LH, iſtæ igitur omnes ſimul ſumptæ vocan-
              <lb/>
              <note position="left" xlink:label="note-0126-02" xlink:href="note-0126-02a" xml:space="preserve">_A. Def. 8._
                <lb/>
              _huius._</note>
            tur, omnes figuræ ſimiles ipſius figuræ, ABC, ſumptæ regula figura,
              <lb/>
            BC, vellinea, aut latere, BC.</s>
            <s xml:id="echoid-s2547" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s2548" xml:space="preserve">Solidum, cuius omnes dictæ figuræ ſimiles ipſius, ABC, ſunt
              <lb/>
            omnia plana, dicitur, ſolidum ſimilare genitum ex figura plana, A
              <lb/>
            BC, iuxta regulam ipſam figuram, vel lineam, BC, & </s>
            <s xml:id="echoid-s2549" xml:space="preserve">ipſa figu-
              <lb/>
              <note position="left" xlink:label="note-0126-03" xlink:href="note-0126-03a" xml:space="preserve">_B. Def. 8._
                <lb/>
              _huius._</note>
            ra, ABC, appellatur genitrix eiuſdem ſolidi, quod eſſe intelliga-
              <lb/>
            tur ipſum, ABC.</s>
            <s xml:id="echoid-s2550" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s2551" xml:space="preserve">Si verò adſit alia figura plana, cuius omnes lineæ, quædam re-
              <lb/>
            gula ſumptæ, deſcribant ſimiles figuras planas, & </s>
            <s xml:id="echoid-s2552" xml:space="preserve">ſimiliter poſitas,
              <lb/>
            omnes vni cuidam æquidiſtantes, & </s>
            <s xml:id="echoid-s2553" xml:space="preserve">ſimiles figuræ, BC, & </s>
            <s xml:id="echoid-s2554" xml:space="preserve">æquè
              <lb/>
              <note position="left" xlink:label="note-0126-04" xlink:href="note-0126-04a" xml:space="preserve">_C. Def. 8._
                <lb/>
              _huius._</note>
            eleuatas ſuper plana genitricium figur arum, ſolida ſimilaria genita
              <lb/>
            ex iſtis figuris, iuxta dictas regulas vocabuntur vlterius inter ſe,
              <lb/>
            vel ad inuicem ſimilaria, licet cum dicemus, ſolida ſimilaria geni-
              <lb/>
            ta ex talibus, & </s>
            <s xml:id="echoid-s2555" xml:space="preserve">talibus figuris, & </s>
            <s xml:id="echoid-s2556" xml:space="preserve">hoc etiam ſine alio addito, in-
              <lb/>
            telligemus ſemper ea eſſe inter ſe, vel ad inuicem ſimilaria, etiam
              <lb/>
            ſinon exprimatur, hoc autem niſi aliter explicetur.</s>
            <s xml:id="echoid-s2557" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s2558" xml:space="preserve">Pro declarandis D. </s>
            <s xml:id="echoid-s2559" xml:space="preserve">& </s>
            <s xml:id="echoid-s2560" xml:space="preserve">E. </s>
            <s xml:id="echoid-s2561" xml:space="preserve">Defin. </s>
            <s xml:id="echoid-s2562" xml:space="preserve">_8._ </s>
            <s xml:id="echoid-s2563" xml:space="preserve">exponantur duæ figuræ in </s>
          </p>
        </div>
      </text>
    </echo>