Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
151
(131)
152
(132)
153
(133)
154
(134)
155
(135)
156
(136)
157
(137)
158
(138)
159
(139)
160
(140)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(106)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div256
"
type
="
section
"
level
="
1
"
n
="
170
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2541
"
xml:space
="
preserve
">
<
pb
o
="
106
"
file
="
0126
"
n
="
126
"
rhead
="
GEOMETRIÆ
"/>
guræ, ABC, productis ſi opus ſit, idem intellige in recta, EM, cuius
<
lb
/>
omnia puncta dicuntur eiuſdem obliqui tranſitus, eius nempè, qui
<
lb
/>
in tali inclinatione fit.</
s
>
<
s
xml:id
="
echoid-s2542
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2543
"
xml:space
="
preserve
">Pro intelligentia Defin. </
s
>
<
s
xml:id
="
echoid-s2544
"
xml:space
="
preserve
">_8._ </
s
>
<
s
xml:id
="
echoid-s2545
"
xml:space
="
preserve
">ſupponatur in figura plana propoſita,
<
lb
/>
ABC, vtcunque recta, BC, quæ deſcribat figuram planam, BC,
<
lb
/>
<
figure
xlink:label
="
fig-0126-01
"
xlink:href
="
fig-0126-01a
"
number
="
68
">
<
image
file
="
0126-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0126-01
"/>
</
figure
>
eleuatam ſuper, ABC, ſin-
<
lb
/>
gulæ autem lineæ, quæ di-
<
lb
/>
cuntur omnes lineæ figuræ,
<
lb
/>
ABC, ſumptæ regula, B
<
lb
/>
C, recti tranſitus, ſi figu-
<
lb
/>
ra, BC, ſit erecta figuræ,
<
lb
/>
ABC, veleiuſdem obliqui
<
lb
/>
tranſitus (qui nempè in in-
<
lb
/>
clinatione deſcriptæ figuræ
<
lb
/>
ad planum, ABC, fit, ſi figura, BC, ſit inclinata ad figuram, AB
<
lb
/>
C,) deſcribere intelligantur figuras planas ſimiles ſimiliter poſitas,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s2546
"
xml:space
="
preserve
">æquidiſtantes ipſi figuræ, BC, ita vt deſcribentes ſint deſcripta-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0126-01
"
xlink:href
="
note-0126-01a
"
xml:space
="
preserve
">_D. Defin._
<
lb
/>
_10. lib.1._</
note
>
rum figurarum lineæ, vel later a bomologa, quarum figurarum ali-
<
lb
/>
quæ ſint ipſæ, BC, PF, LH, iſtæ igitur omnes ſimul ſumptæ vocan-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0126-02
"
xlink:href
="
note-0126-02a
"
xml:space
="
preserve
">_A. Def. 8._
<
lb
/>
_huius._</
note
>
tur, omnes figuræ ſimiles ipſius figuræ, ABC, ſumptæ regula figura,
<
lb
/>
BC, vellinea, aut latere, BC.</
s
>
<
s
xml:id
="
echoid-s2547
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2548
"
xml:space
="
preserve
">Solidum, cuius omnes dictæ figuræ ſimiles ipſius, ABC, ſunt
<
lb
/>
omnia plana, dicitur, ſolidum ſimilare genitum ex figura plana, A
<
lb
/>
BC, iuxta regulam ipſam figuram, vel lineam, BC, & </
s
>
<
s
xml:id
="
echoid-s2549
"
xml:space
="
preserve
">ipſa figu-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0126-03
"
xlink:href
="
note-0126-03a
"
xml:space
="
preserve
">_B. Def. 8._
<
lb
/>
_huius._</
note
>
ra, ABC, appellatur genitrix eiuſdem ſolidi, quod eſſe intelliga-
<
lb
/>
tur ipſum, ABC.</
s
>
<
s
xml:id
="
echoid-s2550
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2551
"
xml:space
="
preserve
">Si verò adſit alia figura plana, cuius omnes lineæ, quædam re-
<
lb
/>
gula ſumptæ, deſcribant ſimiles figuras planas, & </
s
>
<
s
xml:id
="
echoid-s2552
"
xml:space
="
preserve
">ſimiliter poſitas,
<
lb
/>
omnes vni cuidam æquidiſtantes, & </
s
>
<
s
xml:id
="
echoid-s2553
"
xml:space
="
preserve
">ſimiles figuræ, BC, & </
s
>
<
s
xml:id
="
echoid-s2554
"
xml:space
="
preserve
">æquè
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0126-04
"
xlink:href
="
note-0126-04a
"
xml:space
="
preserve
">_C. Def. 8._
<
lb
/>
_huius._</
note
>
eleuatas ſuper plana genitricium figur arum, ſolida ſimilaria genita
<
lb
/>
ex iſtis figuris, iuxta dictas regulas vocabuntur vlterius inter ſe,
<
lb
/>
vel ad inuicem ſimilaria, licet cum dicemus, ſolida ſimilaria geni-
<
lb
/>
ta ex talibus, & </
s
>
<
s
xml:id
="
echoid-s2555
"
xml:space
="
preserve
">talibus figuris, & </
s
>
<
s
xml:id
="
echoid-s2556
"
xml:space
="
preserve
">hoc etiam ſine alio addito, in-
<
lb
/>
telligemus ſemper ea eſſe inter ſe, vel ad inuicem ſimilaria, etiam
<
lb
/>
ſinon exprimatur, hoc autem niſi aliter explicetur.</
s
>
<
s
xml:id
="
echoid-s2557
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2558
"
xml:space
="
preserve
">Pro declarandis D. </
s
>
<
s
xml:id
="
echoid-s2559
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2560
"
xml:space
="
preserve
">E. </
s
>
<
s
xml:id
="
echoid-s2561
"
xml:space
="
preserve
">Defin. </
s
>
<
s
xml:id
="
echoid-s2562
"
xml:space
="
preserve
">_8._ </
s
>
<
s
xml:id
="
echoid-s2563
"
xml:space
="
preserve
">exponantur duæ figuræ in </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>