Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(403)
of 568
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div132
"
type
="
section
"
level
="
1
"
n
="
57
">
<
pb
o
="
403
"
file
="
0119
"
n
="
127
"
rhead
="
ILLUST. QUORUND. PROB. CONSTRUCT.
"/>
<
p
>
<
s
xml:id
="
echoid-s2594
"
xml:space
="
preserve
">Illud autem hic aliter eſt oſtendendum, quod ad lineam
<
lb
/>
H E poni poteſt A E ipſi G æqualis. </
s
>
<
s
xml:id
="
echoid-s2595
"
xml:space
="
preserve
">Sit R S æqualis R B,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s2596
"
xml:space
="
preserve
">jungatur A S. </
s
>
<
s
xml:id
="
echoid-s2597
"
xml:space
="
preserve
">Quoniam igitur in triangulo B A S à ver-
<
lb
/>
tice ad mediam baſin ducta eſt A R, erunt quadrata B R
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s2598
"
xml:space
="
preserve
">R A ſimul ſumpta, hoc eſt, quadratum B A cum duplo
<
lb
/>
<
note
symbol
="
*
"
position
="
right
"
xlink:label
="
note-0119-01
"
xlink:href
="
note-0119-01a
"
xml:space
="
preserve
">per 122.
<
lb
/>
lib.7. Pappi.</
note
>
quadrato A R, ſubdupla quadratorum B A, A S . </
s
>
<
s
xml:id
="
echoid-s2599
"
xml:space
="
preserve
">Itaque quadratum A B duplum cum quadruplo quadrato A R, hoc
<
lb
/>
eſt, cum quadrato R L, æquabitur quadratis B A, A S.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2600
"
xml:space
="
preserve
">Quare ablato utrimque quadrato B A, erit quadratum A S
<
lb
/>
æquale quadratis B A & </
s
>
<
s
xml:id
="
echoid-s2601
"
xml:space
="
preserve
">R L, ac proinde minus quam quadr. </
s
>
<
s
xml:id
="
echoid-s2602
"
xml:space
="
preserve
">
<
lb
/>
A H; </
s
>
<
s
xml:id
="
echoid-s2603
"
xml:space
="
preserve
">nam hoc æquale eſt quadratis A B & </
s
>
<
s
xml:id
="
echoid-s2604
"
xml:space
="
preserve
">G. </
s
>
<
s
xml:id
="
echoid-s2605
"
xml:space
="
preserve
">Eſt igitur
<
lb
/>
A S minor quam A H. </
s
>
<
s
xml:id
="
echoid-s2606
"
xml:space
="
preserve
">Sed major eſt quam A R. </
s
>
<
s
xml:id
="
echoid-s2607
"
xml:space
="
preserve
">Ergo pun-
<
lb
/>
ctum S cadit inter R & </
s
>
<
s
xml:id
="
echoid-s2608
"
xml:space
="
preserve
">H; </
s
>
<
s
xml:id
="
echoid-s2609
"
xml:space
="
preserve
">angulus enim A R H obtuſus
<
lb
/>
eſt. </
s
>
<
s
xml:id
="
echoid-s2610
"
xml:space
="
preserve
">Major itaque eſt R H quam R S vel R B. </
s
>
<
s
xml:id
="
echoid-s2611
"
xml:space
="
preserve
">Et quum
<
lb
/>
propter triangulos ſimiles ſit R H ad H P ut R B ad B A,
<
lb
/>
erit quoque H P major quam B A; </
s
>
<
s
xml:id
="
echoid-s2612
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2613
"
xml:space
="
preserve
">quadratum H P ma-
<
lb
/>
jus quadrato A B. </
s
>
<
s
xml:id
="
echoid-s2614
"
xml:space
="
preserve
">At quadratum H P cum quadrato P A
<
lb
/>
æquatur quadrato A H, hoc eſt, quadratis B A & </
s
>
<
s
xml:id
="
echoid-s2615
"
xml:space
="
preserve
">G. </
s
>
<
s
xml:id
="
echoid-s2616
"
xml:space
="
preserve
">Er-
<
lb
/>
go cum quadratum H P ſit majus quadrato A B, erit invi-
<
lb
/>
cem quadr. </
s
>
<
s
xml:id
="
echoid-s2617
"
xml:space
="
preserve
">P A minus quam quadr. </
s
>
<
s
xml:id
="
echoid-s2618
"
xml:space
="
preserve
">G. </
s
>
<
s
xml:id
="
echoid-s2619
"
xml:space
="
preserve
">Patet igitur quod
<
lb
/>
ſi centro A circumferentia deſcribatur radio A E ipſi G æ-
<
lb
/>
quali, ea lineam H E ſecabit.</
s
>
<
s
xml:id
="
echoid-s2620
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div137
"
type
="
section
"
level
="
1
"
n
="
58
">
<
head
xml:id
="
echoid-head87
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Probl.</
emph
>
VIII.</
head
>
<
head
xml:id
="
echoid-head88
"
style
="
it
"
xml:space
="
preserve
">In Conchoide linea invenire confinia
<
lb
/>
flexus contrarii.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2621
"
xml:space
="
preserve
">Conchoidem intelligimus quam Nicomedes excogitavit;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2622
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-0119-02
"
xlink:href
="
note-0119-02a
"
xml:space
="
preserve
">TAB. XLII.
<
lb
/>
Fig. 5.</
note
>
quâ & </
s
>
<
s
xml:id
="
echoid-s2623
"
xml:space
="
preserve
">angulum diviſit trifariam, & </
s
>
<
s
xml:id
="
echoid-s2624
"
xml:space
="
preserve
">duas medias invenit
<
lb
/>
proportionales: </
s
>
<
s
xml:id
="
echoid-s2625
"
xml:space
="
preserve
">Eſto ea C Q D, polus G, regula autem
<
lb
/>
A B cujus ope deſcripta eſt; </
s
>
<
s
xml:id
="
echoid-s2626
"
xml:space
="
preserve
">quam ſecet G Q ad angulos
<
lb
/>
rectos. </
s
>
<
s
xml:id
="
echoid-s2627
"
xml:space
="
preserve
">Hæc igitur lineæ proprietas eſt, ut ductâ ad ipſam
<
lb
/>
rectâ qualibet ex G puncto, pars hujus inter conchoidem & </
s
>
<
s
xml:id
="
echoid-s2628
"
xml:space
="
preserve
">
<
lb
/>
rectam A B intercepta ſit ipſi A Q æqualis.</
s
>
<
s
xml:id
="
echoid-s2629
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2630
"
xml:space
="
preserve
">Quum autem appareat partem quandam Conchoidis ut in
<
lb
/>
ſchemate ſubjecto C Q D verſus polum G cavam eſſe, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>