Viviani, Vincenzo, De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei

Table of figures

< >
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
< >
page |< < (104) of 347 > >|
128104 cum quadrato intermediæ partis DC; rectangulum ergo ACB ſuperat re-
ctangulum ADB;
& hoc ſemper; ergo rectangulum ACB, ſub æqualibus
partibus compræhenſum, eſt _MAXIMV M._
Quod primo, & c.
Item, quadrato dimidiæ A C æquatur
93[Figure 93] rectangulum A D B, vna cum quadrato
DC, &
eidem quadrato AC æquatur re-
ctangulum AED vna cum quadrato EC,
ergo rectangulum A D C cum quadrato
DC, æquale erit rectangulo AEB, cum
quadrato EC, eſt autem quadratum DC
minus quadrato EC, cum ſit linea DC mi-
nor EC, ex hypoteſi;
ergo rectangulum
ADC maius erit rectangulo AEB.
Quod ſecundò, & c.
THEOR. XXXII. PROP. LXI.
Si fuerint duæ quæcunque coni-ſectiones, non excepto circulo,
eiuſdem, vel diuerſi nominis per diuerſos vertices ſimul adſcriptæ,
quæ in eiuſdem communis ordinatim ductæ extremis punctis ſimul
conueniant, è quorum altero eadem recta linea vtranque ſectionem
contingat, ea coni-ſectio cuius vertex cadit infra verticem alterius
erit alteri inſcripta, &
in ijſdem tantùm applicatæ extremis ſe con-
tingent.
SInt duæ quælibet coni-ſectiones ABC, ADC non excepto circulo, eiuſ-
dem, vel diuerſi nominis per diuerſos vertices B, D ſimul adſcriptæ,
94[Figure 94] quarum communis diameter ſit BH, communiſq;
applicata ſit AC, in cuius
extremis A, C, ſectiones ſimul occurrant, &
ex eorum altero veluti ex

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index